enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gamma function - Wikipedia

    en.wikipedia.org/wiki/Gamma_function

    In mathematics, the gamma function (represented by Γ, capital Greek letter gamma) is the most common extension of the factorial function to complex numbers.Derived by Daniel Bernoulli, the gamma function () is defined for all complex numbers except non-positive integers, and for every positive integer =, () = ()!.

  3. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R + at x 0 = 1.461 632 144 968 362 341 26.... All others occur single between the poles on the negative axis:

  4. Falling and rising factorials - Wikipedia

    en.wikipedia.org/wiki/Falling_and_rising_factorials

    The falling factorial can be extended to real values of using the gamma function provided and + are real numbers that are not negative integers: = (+) (+) , and so can the rising factorial: = (+) . Calculus

  5. Beta function - Wikipedia

    en.wikipedia.org/wiki/Beta_function

    The relationship between the two functions is like that between the gamma function and its generalization the incomplete gamma function. For positive integer a and b, the incomplete beta function will be a polynomial of degree a + b - 1 with rational coefficients.

  6. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    and many more relations for Γ(⁠ n / d ⁠) where the denominator d divides 24 or 60. [6] Gamma quotients with algebraic values must be "poised" in the sense that the sum of arguments is the same (modulo 1) for the denominator and the numerator. A more sophisticated example:

  7. q-gamma function - Wikipedia

    en.wikipedia.org/wiki/Q-gamma_function

    Thus the -gamma function can be considered as an extension of the -factorial function to the real numbers. The relation to the ordinary gamma function is made explicit in the limit = (). There is a simple proof of this limit by Gosper.

  8. Pochhammer k-symbol - Wikipedia

    en.wikipedia.org/wiki/Pochhammer_k-symbol

    Díaz and Pariguan use these definitions to demonstrate a number of properties of the hypergeometric function. Although Díaz and Pariguan restrict these symbols to k > 0, the Pochhammer k-symbol as they define it is well-defined for all real k, and for negative k gives the falling factorial, while for k = 0 it reduces to the power x n.

  9. Lanczos approximation - Wikipedia

    en.wikipedia.org/wiki/Lanczos_approximation

    Thus computing the gamma function becomes a matter of evaluating only a small number of elementary functions and multiplying by stored constants. The Lanczos approximation was popularized by Numerical Recipes , according to which computing the gamma function becomes "not much more difficult than other built-in functions that we take for granted ...

  1. Related searches relation between gamma and factorial numbers in python 3 examples code of games

    gamma function wikipediareciprocal gamma function