Search results
Results from the WOW.Com Content Network
Different methods to determine the equivalence point include: pH indicator A pH indicator is a substance that changes color in response to a chemical change. An acid-base indicator (e.g., phenolphthalein) changes color depending on the pH. Redox indicators are also frequently used. A drop of indicator solution is added to the titration at the ...
A typical titration curve of a diprotic acid, oxalic acid, titrated with a strong base, sodium hydroxide.Both equivalence points are visible. Titrations are often recorded on graphs called titration curves, which generally contain the volume of the titrant as the independent variable and the pH of the solution as the dependent variable (because it changes depending on the composition of the ...
The three species all have concentrations equal to 1 / K D at pH = pK 1, for which [Cr] = 4 / K D . [3] The three lines on this diagram meet at that point. Green line Chromate and hydrogen chromate have equal concentrations. Setting [CrO 2− 4] equal to [HCrO − 4] in eq. 1, [H +] = 1 / K 1 , or pH = log K 1. This ...
pH at the equivalence point; pH after the equivalence point; 1. The initial pH is approximated for a weak acid solution in water using the equation: [1] = [+] where [+] is the initial concentration of the hydronium ion. 2. The pH before the equivalence point depends on the amount of weak acid remaining and the amount of conjugate base formed.
For example, if the concentration of the conjugate base is 10 times greater than the concentration of the acid, their ratio is 10:1, and consequently the pH is pK a + 1 or pK b + 1. Conversely, if a 10-fold excess of the acid occurs with respect to the base, the ratio is 1:10 and the pH is pK a − 1 or pK b − 1.
At half-neutralization the ratio [A −] / [HA] = 1; since log(1) = 0, the pH at half-neutralization is numerically equal to pK a. Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1.
The equivalence point occurs between pH 8-10, indicating the solution is basic at the equivalence point and an indicator such as phenolphthalein would be appropriate. Titration curves corresponding to weak bases and strong acids are similarly behaved, with the solution being acidic at the equivalence point and indicators such as methyl orange ...
However, there is disagreement among practitioners as to which data to plot, whether using only data on one side of equivalence or on both sides, and whether to select data nearest equivalence or in the most linear portions: [4] [5] using the data nearest the equivalence point will enable the two x-intercepts to be more coincident with each ...