Search results
Results from the WOW.Com Content Network
The case originally considered by Carl Friedrich Gauss was the quadratic Gauss sum, for R the field of residues modulo a prime number p, and χ the Legendre symbol.In this case Gauss proved that G(χ) = p 1 ⁄ 2 or ip 1 ⁄ 2 for p congruent to 1 or 3 modulo 4 respectively (the quadratic Gauss sum can also be evaluated by Fourier analysis as well as by contour integration).
1.15.3 Gauss's test. 1.15.4 Kummer's test. ... the partial sums are Cauchy only if this limit exists and is equal to zero. The test is inconclusive if the limit of ...
In number theory, quadratic Gauss sums are certain finite sums of roots of unity. A quadratic Gauss sum can be interpreted as a linear combination of the values of the complex exponential function with coefficients given by a quadratic character; for a general character, one obtains a more general Gauss sum .
The Gauss sum (,) can thus be written as a linear combination of Gaussian periods (with coefficients χ(a)); the converse is also true, as a consequence of the orthogonality relations for the group (Z/nZ) ×. In other words, the Gaussian periods and Gauss sums are each other's Fourier transforms.
A fundamental property of these Gauss sums is that = where = (). To put this in context of the next proof, the individual elements of the Gauss sum are in the cyclotomic field L = Q ( ζ p ) {\displaystyle L=\mathbb {Q} (\zeta _{p})} but the above formula shows that the sum itself is a generator of the unique quadratic field contained in L .
In mathematics, the Gross–Koblitz formula, introduced by Gross and Koblitz expresses a Gauss sum using a product of values of the p-adic gamma function. It is an analog of the Chowla–Selberg formula for the usual gamma function. It implies the Hasse–Davenport relation and generalizes the Stickelberger theorem.
In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.
The partial sums of the series 1 + 2 + 3 ... the terms do not approach zero, so the series diverges by the term test. ... (PDF). The Euler-Maclaurin formula ...