Search results
Results from the WOW.Com Content Network
Piezoelectric micromachined ultrasonic transducers (PMUT) are MEMS-based piezoelectric ultrasonic transducers.Unlike bulk piezoelectric transducers which use the thickness-mode motion of a plate of piezoelectric ceramic such as PZT or single-crystal PMN-PT, PMUT are based on the flexural motion of a thin membrane coupled with a thin piezoelectric film, such as PVDF.
MEMS microphone Akustica AKU230. The MEMS (microelectromechanical systems) microphone is also called a microphone chip or silicon microphone. A pressure-sensitive diaphragm is etched directly into a silicon wafer by MEMS processing techniques and is usually accompanied with an integrated preamplifier. [35] Most MEMS microphones are variants of ...
MEMS microcantilever resonating inside a scanning electron microscope Proposal submitted to DARPA in 1986 first introducing the term "microelectromechanical systems". MEMS (micro-electromechanical systems) is the technology of microscopic devices incorporating both electronic and moving parts.
Passive ultrasonic sensors may be used to detect high-pressure gas or liquid leaks, or other hazardous conditions that generate ultrasonic sound. In these devices, ultrasound from the transducer (microphone) is converted down to the human hearing range (Audible Sound = 20 Hz to 20 kHz).
Capacitive micromachined ultrasonic transducers (CMUT) are a relatively new concept in the field of ultrasonic transducers. Most of the commercial ultrasonic transducers today are based on piezoelectricity. In CMUTs, the energy transduction is due to change in capacitance. CMUTs are constructed on silicon using micromachining techniques.
Gerhard M. Sessler (born 15 February 1931 in Rosenfeld, Baden-Württemberg, Germany) [1] is a German inventor and scientist. He is Professor emeritus at the Department of Electrical Engineering and Information Technology of the Technische Universität Darmstadt.
Surface acoustic wave sensors are a class of microelectromechanical systems (MEMS) which rely on the modulation of surface acoustic waves to sense a physical phenomenon. The sensor transduces an input electrical signal into a mechanical wave which, unlike an electrical signal, can be easily influenced by physical phenomena.
The first reported piezoelectrically actuated RF MEMS switch was developed by scientists at the LG Electronics Institute of Technology in Seoul, South Korea in 2005. [3] The researchers designed and actualized a RF MEMS switch with a piezoelectric cantilever actuator that had an operation voltage of 2.5 volts. [7]