Search results
Results from the WOW.Com Content Network
The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.
The ultimate strength is the maximum stress that a material can withstand before it breaks or weakens. [12] For example, the ultimate tensile strength (UTS) of AISI 1018 Steel is 440 MPa. In Imperial units, the unit of stress is given as lbf/in 2 or pounds-force per square inch. This unit is often abbreviated as psi.
T6 temper 7075 has an ultimate tensile strength of 510–540 MPa (74,000–78,000 psi) and yield strength of at least 430–480 MPa (63,000–69,000 psi). It has a failure elongation of 5–11%. [9] The T6 temper is usually achieved by homogenizing the cast 7075 at 450 °C for several hours, quenching, and then ageing at 120 °C for 24 hours.
T6 temper 6061 has been treated to provide the maximum precipitation hardening (and therefore maximum yield strength) for a 6061 aluminium alloy. It has an ultimate tensile strength of at least 290 MPa (42 ksi) and yield strength of at least 240 MPa (35 ksi). More typical values are 310 MPa (45 ksi) and 270 MPa (39 ksi), respectively. [10]
Elastic properties describe the reversible deformation (elastic response) of a material to an applied stress.They are a subset of the material properties that provide a quantitative description of the characteristics of a material, like its strength.
Typical values of the limit for steels are one half the ultimate tensile strength, to a maximum of 290 MPa (42 ksi).For iron, aluminium, and copper alloys, is typically 0.4 times the ultimate tensile strength.
Unhardened 5086 has a yield strength of 120 MPa (17 ksi) and ultimate tensile strength of 260 MPa (38 ksi) from −28 to 100 °C (−18 to 212 °F). At cryogenic temperatures it is slightly stronger: at −196 °C (−321 °F), yield of 130 MPa (19 ksi) and ultimate tensile strength of 380 MPa (55 ksi); above 100 °C (212 °F) its strength is reduced.
Tensile testing, also known as tension testing, [1] is a fundamental materials science and engineering test in which a sample is subjected to a controlled tension until failure. Properties that are directly measured via a tensile test are ultimate tensile strength , breaking strength , maximum elongation and reduction in area. [ 2 ]