enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. KNIME - Wikipedia

    en.wikipedia.org/wiki/KNIME

    KNIME (/ n aɪ m / ⓘ), the Konstanz Information Miner, [2] is a free and open-source data analytics, reporting and integration platform.KNIME integrates various components for machine learning and data mining through its modular data pipelining "Building Blocks of Analytics" concept.

  3. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.

  4. Low-rank approximation - Wikipedia

    en.wikipedia.org/wiki/Low-rank_approximation

    In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.

  5. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Dataset HF card, and project's GitHub repository. [393] Diggelmann et al. Climate News dataset A dataset for NLP and climate change media researchers The dataset is made up of a number of data artifacts (JSON, JSONL & CSV text files & SQLite database) Climate news DB, Project's GitHub repository [394] ADGEfficiency Climatext

  6. Latin hypercube sampling - Wikipedia

    en.wikipedia.org/wiki/Latin_hypercube_sampling

    In Latin hypercube sampling one must first decide how many sample points to use and for each sample point remember in which row and column the sample point was taken. Such configuration is similar to having N rooks on a chess board without threatening each other. In orthogonal sampling, the sample space is partitioned into equally probable ...

  7. Comparison gallery of image scaling algorithms - Wikipedia

    en.wikipedia.org/wiki/Comparison_gallery_of...

    Using machine learning, convincing details are generated as best guesses by learning common patterns from a training data set. The upscaled result is sometimes described as a hallucination because the information introduced may not correspond to the content of the source.

  8. Low-density parity-check code - Wikipedia

    en.wikipedia.org/wiki/Low-density_parity-check_code

    The LDPC code, in contrast, uses many low depth constituent codes (accumulators) in parallel, each of which encode only a small portion of the input frame. The many constituent codes can be viewed as many low depth (2 state) "convolutional codes" that are connected via the repeat and distribute operations. The repeat and distribute operations ...

  9. Unsupervised learning - Wikipedia

    en.wikipedia.org/wiki/Unsupervised_learning

    Unsupervised learning is a framework in machine learning where, in contrast to supervised learning, algorithms learn patterns exclusively from unlabeled data. [1] Other frameworks in the spectrum of supervisions include weak- or semi-supervision , where a small portion of the data is tagged, and self-supervision .