Search results
Results from the WOW.Com Content Network
The process of feature selection aims to find a suitable subset of the input variables (features, or attributes) for the task at hand.The three strategies are: the filter strategy (e.g., information gain), the wrapper strategy (e.g., accuracy-guided search), and the embedded strategy (features are added or removed while building the model based on prediction errors).
For example, low-fidelity data can be acquired by using a distributed simulation platform, such as X-Plane, and requiring novice participants to operate in scenarios that are approximations of the real-world context. The benefit of using low-fidelity data is that they are relatively inexpensive to acquire, so it is possible to elicit larger ...
For example, consider a dataset that contains images of a letter 'A', which has been scaled and rotated by varying amounts. Each image has 32×32 pixels. Each image can be represented as a vector of 1024 pixel values. Each row is a sample on a two-dimensional manifold in 1024-dimensional space (a Hamming space).
In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.
Thus we require some assumption on the matrix to create a well-posed problem, such as assuming it has maximal determinant, is positive definite, or is low-rank. [1] [2] For example, one may assume the matrix has low-rank structure, and then seek to find the lowest rank matrix or, if the rank of the completed matrix is known, a matrix of rank ...
Animation of Gaussian elimination. Red row eliminates the following rows, green rows change their order. In mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of row-wise operations performed on the corresponding matrix of coefficients.
The design matrix has dimension n-by-p, where n is the number of samples observed, and p is the number of variables measured in all samples. [4] [5]In this representation different rows typically represent different repetitions of an experiment, while columns represent different types of data (say, the results from particular probes).
For example, CSC is (val, row_ind, col_ptr), where val is an array of the (top-to-bottom, then left-to-right) non-zero values of the matrix; row_ind is the row indices corresponding to the values; and, col_ptr is the list of val indexes where each column starts. The name is based on the fact that column index information is compressed relative ...