enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  3. Ohm's law - Wikipedia

    en.wikipedia.org/wiki/Ohm's_law

    Ohm's law, in the form above, is an extremely useful equation in the field of electrical/electronic engineering because it describes how voltage, current and resistance are interrelated on a "macroscopic" level, that is, commonly, as circuit elements in an electrical circuit.

  4. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  5. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    The AC current density J in a conductor decreases exponentially from its value at the surface J S according to the depth d from the surface, as follows: [4]: 362 = (+) / where is called the skin depth which is defined as the depth below the surface of the conductor at which the current density has fallen to 1/e (about 0.37) of J S.

  6. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    The Poynting vector appears in Poynting's theorem (see that article for the derivation), an energy-conservation law: =, where J f is the current density of free charges and u is the electromagnetic energy density for linear, nondispersive materials, given by = (+), where

  7. Drude model - Wikipedia

    en.wikipedia.org/wiki/Drude_model

    The two most significant results of the Drude model are an electronic equation of motion, = (+ ) , and a linear relationship between current density J and electric field E, =. Here t is the time, p is the average momentum per electron and q, n, m , and τ are respectively the electron charge, number density, mass, and mean free time between ...

  8. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  9. Jefimenko's equations - Wikipedia

    en.wikipedia.org/wiki/Jefimenko's_equations

    The Heaviside–Feynman formula, also known as the Jefimenko–Feynman formula, can be seen as the point-like electric charge version of Jefimenko's equations. Actually, it can be (non trivially) deduced from them using Dirac functions , or using the Liénard-Wiechert potentials . [ 4 ]