enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Arg max - Wikipedia

    en.wikipedia.org/wiki/Arg_max

    As an example, both unnormalised and normalised sinc functions above have of {0} because both attain their global maximum value of 1 at x = 0. The unnormalised sinc function (red) has arg min of {−4.49, 4.49}, approximately, because it has 2 global minimum values of approximately −0.217 at x = ±4.49.

  3. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...

  4. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    In the language of tropical analysis, the softmax is a deformation or "quantization" of arg max and arg min, corresponding to using the log semiring instead of the max-plus semiring (respectively min-plus semiring), and recovering the arg max or arg min by taking the limit is called "tropicalization" or "dequantization".

  5. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  6. Smooth maximum - Wikipedia

    en.wikipedia.org/wiki/Smooth_maximum

    Smoothmax of (−x, x) versus x for various parameter values. Very smooth for =0.5, and more sharp for =8. For large positive values of the parameter >, the following formulation is a smooth, differentiable approximation of the maximum function. For negative values of the parameter that are large in absolute value, it approximates the minimum.

  7. Generalized extreme value distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_extreme_value...

    The cumulative distribution function of the generalized extreme value distribution solves the stability postulate equation. [citation needed] The generalized extreme value distribution is a special case of a max-stable distribution, and is a transformation of a min-stable distribution.

  8. Matrix norm - Wikipedia

    en.wikipedia.org/wiki/Matrix_norm

    Suppose a vector norm ‖ ‖ on and a vector norm ‖ ‖ on are given. Any matrix A induces a linear operator from to with respect to the standard basis, and one defines the corresponding induced norm or operator norm or subordinate norm on the space of all matrices as follows: ‖ ‖, = {‖ ‖: ‖ ‖ =} = {‖ ‖ ‖ ‖:} . where denotes the supremum.

  9. Mode (statistics) - Wikipedia

    en.wikipedia.org/wiki/Mode_(statistics)

    In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)). In other words, it is the value that is most likely to be sampled.