enow.com Web Search

  1. Ad

    related to: project a circle onto sphere examples pdf worksheet 2 line 7
  2. teacherspayteachers.com has been visited by 100K+ users in the past month

    • Free Resources

      Download printables for any topic

      at no cost to you. See what's free!

    • Worksheets

      All the printables you need for

      math, ELA, science, and much more.

    • Lessons

      Powerpoints, pdfs, and more to

      support your classroom instruction.

    • Resources on Sale

      The materials you need at the best

      prices. Shop limited time offers.

Search results

  1. Results from the WOW.Com Content Network
  2. Stereographic projection - Wikipedia

    en.wikipedia.org/wiki/Stereographic_projection

    Stereographic projection of the unit sphere from the north pole onto the plane z = 0, shown here in cross section. The unit sphere S 2 in three-dimensional space R 3 is the set of points (x, y, z) such that x 2 + y 2 + z 2 = 1. Let N = (0, 0, 1) be the "north pole", and let M be the rest of the sphere.

  3. Gnomonic projection - Wikipedia

    en.wikipedia.org/wiki/Gnomonic_projection

    Gnomonic projection of a portion of the north hemisphere centered on the geographic North Pole The gnomonic projection with Tissot's indicatrix of deformation. A gnomonic projection, also known as a central projection or rectilinear projection, is a perspective projection of a sphere, with center of projection at the sphere's center, onto any plane not passing through the center, most commonly ...

  4. 3D projection - Wikipedia

    en.wikipedia.org/wiki/3D_projection

    For example, lines traced from the eye point at 45° to the picture plane intersect the latter along a circle whose radius is the distance of the eye point from the plane, thus tracing that circle aids the construction of all the vanishing points of 45° lines; in particular, the intersection of that circle with the horizon line consists of two ...

  5. Lambert azimuthal equal-area projection - Wikipedia

    en.wikipedia.org/wiki/Lambert_azimuthal_equal...

    A cross sectional view of the sphere and a plane tangent to it at S. Each point on the sphere (except the antipode) is projected to the plane along a circular arc centered at the point of tangency between the sphere and plane. To define the Lambert azimuthal projection, imagine a plane set tangent to the sphere at some point S on the

  6. Spherical circle - Wikipedia

    en.wikipedia.org/wiki/Spherical_circle

    A circle with non-zero geodesic curvature is called a small circle, and is analogous to a circle in the plane. A small circle separates the sphere into two spherical disks or spherical caps, each with the circle as its boundary. For any triple of distinct non-antipodal points a unique small circle passes through all three.

  7. Peirce quincuncial projection - Wikipedia

    en.wikipedia.org/wiki/Peirce_quincuncial_projection

    The maturation of complex analysis led to general techniques for conformal mapping, where points of a flat surface are handled as numbers on the complex plane.While working at the United States Coast and Geodetic Survey, the American philosopher Charles Sanders Peirce published his projection in 1879, [2] having been inspired by H. A. Schwarz's 1869 conformal transformation of a circle onto a ...

  8. Orthographic map projection - Wikipedia

    en.wikipedia.org/wiki/Orthographic_map_projection

    [2] Vitruvius also seems to have devised the term orthographic (from the Greek orthos (= “straight”) and graphē (= “drawing”)) for the projection. However, the name analemma, which also meant a sundial showing latitude and longitude, was the common name until François d'Aguilon of Antwerp promoted its present name in 1613. [2]

  9. Projective line - Wikipedia

    en.wikipedia.org/wiki/Projective_line

    In mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a point at infinity.The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; for example, two distinct projective lines in a projective plane meet in exactly one point (there is no "parallel" case).

  1. Ad

    related to: project a circle onto sphere examples pdf worksheet 2 line 7