enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Creep and shrinkage of concrete - Wikipedia

    en.wikipedia.org/.../Creep_and_shrinkage_of_concrete

    To separate shrinkage from creep, the compliance function (, ′), defined as the stress-produced strain (i.e., the total strain minus shrinkage) caused at time t by a unit sustained uniaxial stress = applied at age ′, is measured as the strain difference between the loaded and load-free specimens.

  3. Properties of concrete - Wikipedia

    en.wikipedia.org/wiki/Properties_of_concrete

    Concrete has a very low coefficient of thermal expansion, and as it matures concrete shrinks. All concrete structures will crack to some extent, due to shrinkage and tension. Concrete which is subjected to long-duration forces is prone to creep. The density of concrete varies, but is around 2,400 kilograms per cubic metre (150 lb/cu ft). [1]

  4. Modified compression field theory - Wikipedia

    en.wikipedia.org/wiki/Modified_Compression_Field...

    It models concrete considering concrete stresses in principal directions summed with reinforcing stresses assumed to be only axial. The concrete stress-strain behaviour was derived originally from Vecchio's tests and has since been confirmed with about 250 experiments performed on two large special purpose testing machines at the University of ...

  5. Poisson's ratio - Wikipedia

    en.wikipedia.org/wiki/Poisson's_ratio

    Poisson's ratio of a material defines the ratio of transverse strain (x direction) to the axial strain (y direction)In materials science and solid mechanics, Poisson's ratio (symbol: ν ()) is a measure of the Poisson effect, the deformation (expansion or contraction) of a material in directions perpendicular to the specific direction of loading.

  6. Stress–strain analysis - Wikipedia

    en.wikipedia.org/wiki/Stress–strain_analysis

    Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics , stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other ...

  7. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    For example, moderate creep in concrete is sometimes welcomed because it relieves tensile stresses that might otherwise lead to cracking. Unlike brittle fracture, creep deformation does not occur suddenly upon the application of stress. Instead, strain accumulates as a result of long-term stress. Therefore, creep is a "time-dependent" deformation.

  8. Crack spacing of reinforced concrete - Wikipedia

    en.wikipedia.org/wiki/Crack_spacing_of...

    Concrete is a brittle material and can only withstand small amount of tensile strain due to stress before cracking. When a reinforced concrete member is put in tension, after cracking, the member elongates by widening of cracks and by formation of new cracks. Figure 1 Formation of internal cracks

  9. Residual stress - Wikipedia

    en.wikipedia.org/wiki/Residual_stress

    These techniques function using a "strain release" principle; cutting the measurement specimen to relax the residual stresses and then measuring the deformed shape. As these deformations are usually elastic, there is an exploitable linear relationship between the magnitude of the deformation and magnitude of the released residual stress. [ 4 ]