Search results
Results from the WOW.Com Content Network
The refractive index is about 2.67 at 550 nm (green), and about 2.40 at 10.6 μm . Similar to zinc sulfide, ZnSe is produced as microcrystalline sheets by synthesis from hydrogen selenide gas and zinc vapour. Another method of producing is a growth from melt under excessive pressure of inert gas (Ar usually). [5]
Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers. There are also weaker dependencies on temperature , pressure / stress , etc., as well on precise material compositions (presence of dopants , etc.); for many materials and typical conditions, however, these ...
Since the refractive index is a fundamental physical property of a substance, it is often used to identify a particular substance, confirm its purity, or measure its concentration. The refractive index is used to measure solids, liquids, and gases. Most commonly it is used to measure the concentration of a solute in an aqueous solution.
The calculation of glass properties allows "fine-tuning" of desired material characteristics, e.g., the refractive index. [1]The calculation of glass properties (glass modeling) is used to predict glass properties of interest or glass behavior under certain conditions (e.g., during production) without experimental investigation, based on past data and experience, with the intention to save ...
It is recommended to name the SVG file “Complex permittivity and refractive index for Au.svg”—then the template Vector version available (or Vva) does not need the new image name parameter. Description Complex permittivity and refractive index for Au.pdf
A. R. Forouhi and I. Bloomer deduced dispersion equations for the refractive index, n, and extinction coefficient, k, which were published in 1986 [1] and 1988. [2] The 1986 publication relates to amorphous materials, while the 1988 publication relates to crystalline.
In optics and lens design, the Abbe number, also known as the Vd-number or constringence of a transparent material, is an approximate measure of the material's dispersion (change of refractive index versus wavelength), with high values of Vd indicating low dispersion.
The most general form of Cauchy's equation is = + + +,where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths.