Search results
Results from the WOW.Com Content Network
A copper chromite catalyst is usually used industrially. [1] The cis/trans ratio of the CHDM is affected by the catalyst. [2] Byproduct of this process are 4-methylcyclohexanemethanol (CH 3 C 6 H 10 CH 2 OH) and the monoester methyl 4-methyl-4-cyclohexanecarboxylate (CH 3 C 6 H 10 CO 2 CH 3, CAS registry number 51181-40-9). [3]
1,4-Cyclohexadiene is an organic compound with the formula C 6 H 8. It is a colourless, flammable liquid that is of academic interest as a prototype of a large class of related compounds called terpenoids, an example being γ-terpinene. An isomer of this compound is 1,3-cyclohexadiene.
This can react with almost all alkenes and alkynes, including styrenes and alcohols. This is especially useful, as the unmodified Simmons-Smith is known to deprotonate alcohols. Unfortunately, as in Pathway B shown the intermediate can also react with the starting diazo compound, giving cis- or trans- 1,2-diphenylethene.
[4] [5] [6] These reactions are metal-catalyzed and proceed through a metallacyclobutane intermediate. [7] It was first published by Dider Villemin in 1980 describing the synthesis of an Exaltolide precursor, [ 8 ] and later become popularized by Robert H. Grubbs and Richard R. Schrock , who shared the Nobel Prize in Chemistry , along with Yves ...
Most methylcyclohexane is extracted from petroleum but it can be also produced by catalytic hydrogenation of toluene: CH 3 C 6 H 5 + 3 H 2 → CH 3 C 6 H 11. The hydrocarbon is a minor component of automobile fuel, with its share in US gasoline varying between 0.3 and 1.7% in early 1990s [10] and 0.1 to 1% in 2011. [11]
The silver salt 1 reacts with bromine to form the acyl hypohalite intermediate 2. Formation of the diradical pair 3 allows for radical decarboxylation to form the diradical pair 4, which recombines to form the organic halide 5. The trend in the yield of the resulting halide is primary > secondary > tertiary. [2] [3]
Compared with its isomer cyclohexa-1,4-diene, cyclohexa-1,3-diene is about 1.6 kJ/mol more stable. [5] Cyclohexadiene and its derivatives form (diene)iron tricarbonyl complexes. Illustrative is [(C 6 H 8)Fe(CO) 3], an orange liquid. This complex reacts with hydride-abstracting reagents to give the cyclohexadienyl derivative [(C 6 H 7)Fe(CO) 3 ...
Cyclohexanol is produced by the oxidation of cyclohexane in air, typically using cobalt catalysts: [5]. 2 C 6 H 12 + O 2 → 2 C 6 H 11 OH. This process coforms cyclohexanone, and this mixture ("KA oil" for ketone-alcohol oil) is the main feedstock for the production of adipic acid.