Search results
Results from the WOW.Com Content Network
Powell's dog leg method, also called Powell's hybrid method, is an iterative optimisation algorithm for the solution of non-linear least squares problems, introduced in 1970 by Michael J. D. Powell. [1] Similarly to the Levenberg–Marquardt algorithm, it combines the Gauss–Newton algorithm with gradient descent, but it uses an explicit trust ...
It is generally used in solving non-linear equations like Euler's equations in computational fluid dynamics. Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To ...
The method is useful for calculating the local minimum of a continuous but complex function, especially one without an underlying mathematical definition, because it is not necessary to take derivatives. The basic algorithm is simple; the complexity is in the linear searches along the search vectors, which can be achieved via Brent's method.
The hedge algorithm is similar to the weighted majority algorithm. However, their exponential update rules are different. [2] It is generally used to solve the problem of binary allocation in which we need to allocate different portion of resources into N different options. The loss with every option is available at the end of every iteration.
Being released in 1983, Xpress was the first commercial LP and MIP solver running on PCs. [4] In 1992, an Xpress version for parallel computing was published, which was extended to distributed computing five years later. [5] Xpress was the first MIP solver to cross the billion matrix non-zero threshold by introducing 64-bit indexing in 2010. [6]
A frontal solver is an approach to solving sparse linear systems which is used extensively in finite element analysis. [1] Algorithms of this kind are variants of Gauss elimination that automatically avoids a large number of operations involving zero terms due to the fact that the matrix is only sparse. [ 2 ]
The Arnoldi process also constructs ~, an (+)-by-upper Hessenberg matrix which satisfies = + ~ an equality which is used to simplify the calculation of (see § Solving the least squares problem). Note that, for symmetric matrices, a symmetric tri-diagonal matrix is actually achieved, resulting in the MINRES method.
Originally described in Xu's Ph.D. thesis [9] and later published in Bramble-Pasciak-Xu, [10] the BPX-preconditioner is one of the two major multigrid approaches (the other is the classic multigrid algorithm such as V-cycle) for solving large-scale algebraic systems that arise from the discretization of models in science and engineering ...