Search results
Results from the WOW.Com Content Network
A common, vulgar, [n 1] or simple fraction (examples: 1 / 2 and 17 / 3 ) consists of an integer numerator, displayed above a line (or before a slash like 1 ⁄ 2), and a non-zero integer denominator, displayed below (or after) that line. If these integers are positive, then the numerator represents a number of equal parts, and ...
An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). [1] In other words, a fraction a / b is irreducible if and only if a and b are coprime ...
By considering the complete quotients of periodic continued fractions, Euler was able to prove that if x is a regular periodic continued fraction, then x is a quadratic irrational number. The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy.
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
One half is the rational number that lies midway between 0 and 1 on the number line. Multiplication by one half is equivalent to division by two, or "halving"; conversely, division by one half is equivalent to multiplication by two, or "doubling". A square of side length one, here dissected into rectangles whose areas are successive powers of ...
The set of rational numbers is not complete. For example, the sequence (1; 1.4; 1.41; 1.414; 1.4142; 1.41421; ...), where each term adds a digit of the decimal expansion of the positive square root of 2, is Cauchy but it does not converge to a rational number (in the real numbers, in contrast, it converges to the positive square root of 2).
However, 1 is a square mod 3 (equal to the square of both 1 and 2 mod 3), so there can be no similar identity for all values of that are congruent to 1 mod 3. More generally, as 1 is a square mod n {\displaystyle n} for all n > 1 {\displaystyle n>1} , there can be no complete covering system of modular identities for all n {\displaystyle n ...
The Archimedean property: any point x before the finish line lies between two of the points P n (inclusive).. It is possible to prove the equation 0.999... = 1 using just the mathematical tools of comparison and addition of (finite) decimal numbers, without any reference to more advanced topics such as series and limits.