Search results
Results from the WOW.Com Content Network
A feasible solution is basic if-and-only-if the columns of the matrix are linearly independent, where K is the set of indices of the non-zero elements of . [1] ...
The space of all candidate solutions, before any feasible points have been excluded, is called the feasible region, feasible set, search space, or solution space. [2] This is the set of all possible solutions that satisfy the problem's constraints. Constraint satisfaction is the process of finding a point in the feasible set.
However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).
For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0. For example, if there is a graph G which contains vertices u and v, an optimization problem might be "find a path from u to v that uses the fewest edges". This problem might have ...
The possible results of Phase I are either that a basic feasible solution is found or that the feasible region is empty. In the latter case the linear program is called infeasible. In the second step, Phase II, the simplex algorithm is applied using the basic feasible solution found in Phase I as a starting point.
The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.
A. The feasible set {b+L} ∩ K is bounded, and intersects the interior of the cone K. B. We are given in advance a strictly-feasible solution x^, that is, a feasible solution in the interior of K. C. We know in advance the optimal objective value, c*, of the problem. D. We are given an M-logarithmically-homogeneous self-concordant barrier F ...
A constraint is active for a particular solution if it is satisfied at equality for that solution. A basic solution that satisfies all the constraints defining P {\displaystyle P} (or, in other words, one that lies within P {\displaystyle P} ) is called a basic feasible solution .