enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pentahedron - Wikipedia

    en.wikipedia.org/wiki/Pentahedron

    There is a third topological polyhedral figure with 5 faces, degenerate as a polyhedron: it exists as a spherical tiling of digon faces, called a pentagonal hosohedron with Schläfli symbol {2,5}. It has 2 ( antipodal point ) vertices, 5 edges, and 5 digonal faces.

  3. List of polygons - Wikipedia

    en.wikipedia.org/wiki/List_of_polygons

    A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. In geometry, a polygon is traditionally a plane figure that is bounded by a finite chain of straight line segments closing in a loop to form a closed chain. These segments are called its edges or sides, and the points where two of the edges meet are the ...

  4. 5-cell - Wikipedia

    en.wikipedia.org/wiki/5-cell

    In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C 5, hypertetrahedron, pentachoron, [1] pentatope, pentahedroid, [2] tetrahedral pyramid, or 4-simplex (Coxeter's polytope), [3] the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three ...

  5. List of mathematical shapes - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_shapes

    Edge, a 1-dimensional element; Face, a 2-dimensional element; Cell, a 3-dimensional element; Hypercell or Teron, a 4-dimensional element; Facet, an (n-1)-dimensional element; Ridge, an (n-2)-dimensional element; Peak, an (n-3)-dimensional element; For example, in a polyhedron (3-dimensional polytope), a face is a facet, an edge is a ridge, and ...

  6. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.

  7. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    where φ = ⁠ 1 + √ 5 / 2 ⁠ is the golden ratio. Therefore, the circumradius of this rhombicosidodecahedron is the common distance of these points from the origin, namely √ φ 6 +2 = √ 8φ+7 for edge length 2. For unit edge length, R must be halved, giving R = ⁠ √ 8φ+7 / 2 ⁠ = ⁠ √ 11+45 / 2 ⁠ ≈ 2.233.

  8. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    5 / 2 ⁠.4.5: I h: C48: ... The great disnub dirhombidodecahedron has 240 of its 360 edges coinciding in space in 120 pairs. Because of this edge-degeneracy, it ...

  9. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    Any two opposite edges of a tetrahedron lie on two skew lines, and the distance between the edges is defined as the distance between the two skew lines. Let d {\displaystyle d} be the distance between the skew lines formed by opposite edges a {\displaystyle a} and b − c {\displaystyle \mathbf {b} -\mathbf {c} } as calculated here .