Search results
Results from the WOW.Com Content Network
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
Diagram illustrating three basic geometric sequences of the pattern 1(r n−1) up to 6 iterations deep.The first block is a unit block and the dashed line represents the infinite sum of the sequence, a number that it will forever approach but never touch: 2, 3/2, and 4/3 respectively.
As with any infinite series, the sum + + + + is defined to mean the limit of the partial sum of the first n terms = + + + + + + as n approaches infinity, if it exists. By various arguments, [a] [1] one can show that each finite sum is equal to
An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications, such as the computation of expected values in probability theory , especially in Bernoulli processes .
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
For example, consider the sum: + + + + = This sum can be found quickly by taking the number n of terms being added (here 5), multiplying by the sum of the first and last number in the progression (here 2 + 14 = 16), and dividing by 2: (+)
Archimedes showed that the sum of the areas of triangles ABC and CDE is 1 / 4 of the area of triangle ACE. He then constructs another layer of four triangles atop those, the sum of whose areas is 1 / 4 of the sum of the areas of ABC and CDE, and then another layer of eight triangles atop that, having 1 / 4 of that area ...
In mathematics, 1 + 2 + 4 + 8 + ⋯ is the infinite series whose terms are the successive powers of two. As a geometric series , it is characterized by its first term, 1, and its common ratio , 2. As a series of real numbers it diverges to infinity , so the sum of this series is infinity.