Search results
Results from the WOW.Com Content Network
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
In the petroleum refining and petrochemical industries, the initialism BTX refers to mixtures of benzene, toluene, and the three xylene isomers, all of which are aromatic hydrocarbons. The xylene isomers are distinguished by the designations ortho – (or o –), meta – (or m –), and para – (or p –) as indicated in the adjacent diagram.
Aromatic alcohols (example: tyrosol) are produced by the yeast Candida albicans. [47] They are also found in beer. [48] These molecules are quorum sensing compounds for Saccharomyces cerevisiae. [49] Metabolism. Aryl-alcohol dehydrogenase uses an aromatic alcohol and NAD + to produce an aromatic aldehyde, NADH and H +.
The aromatic products of the reaction are then separated from the reaction mixture (or reformate) by extraction with any one of a number of solvents, including diethylene glycol or sulfolane, and benzene is then separated from the other aromatics by distillation. The extraction step of aromatics from the reformate is designed to produce ...
Phenols are susceptible to Electrophilic aromatic substitutions. Condensation with formaldehyde gives resinous materials, famously Bakelite. [citation needed] Another industrial-scale electrophilic aromatic substitution is the production of bisphenol A, which is produced by the condensation with acetone. [3]
Aromatization is a chemical reaction in which an aromatic system is formed from a single nonaromatic precursor. Typically aromatization is achieved by dehydrogenation of existing cyclic compounds, illustrated by the conversion of cyclohexane into benzene. Aromatization includes the formation of heterocyclic systems. [1]
Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules ("substituted aromatics"). Typical simple aromatic compounds are benzene, indole, and pyridine. [1] [2] Simple aromatic rings can be heterocyclic if they contain non-carbon ring atoms, for example, oxygen, nitrogen, or sulfur.
The production of p-xylene is industrially significant, with annual demand estimated at 37 million tons in 2014, and still on the increase. [12] [13] p-Xylene is produced by catalytic reforming of petroleum naphtha as part of the BTX aromatics (benzene, toluene and the xylene isomers) extracted from the catalytic reformate.