Search results
Results from the WOW.Com Content Network
The effects of static electricity are familiar to most people because they can feel, hear, and even see sparks if the excess charge is neutralized when brought close to an electrical conductor (for example, a path to ground), or a region with an excess charge of the opposite polarity (positive or negative).
The inner cylinder is the Faraday pail container itself, separated from the outer cylinder with insulating supports. The outer cylindrical metal screen surrounds the inner, and acts as a ground to shield it from stray charges. This design largely eliminates the stray charge problem, as well as allowing the experimenter to see inside the container.
Gauss's law [9] [10] states that "the total electric flux through any closed surface in free space of any shape drawn in an electric field is proportional to the total electric charge enclosed by the surface." Many numerical problems can be solved by considering a Gaussian surface around a body. Mathematically, Gauss's law takes the form of an ...
Then, if the total flux is known, the field itself can be deduced at every point. Common examples of symmetries which lend themselves to Gauss's law include: cylindrical symmetry, planar symmetry, and spherical symmetry. See the article Gaussian surface for examples where these symmetries are exploited to compute electric fields.
In electromagnetism, Jefimenko's equations (named after Oleg D. Jefimenko) give the electric field and magnetic field due to a distribution of electric charges and electric current in space, that takes into account the propagation delay (retarded time) of the fields due to the finite speed of light and relativistic effects.
Position vector r is a point to calculate the electric field; r′ is a point in the charged object. Contrary to the strong analogy between (classical) gravitation and electrostatics, there are no "centre of charge" or "centre of electrostatic attraction" analogues. [citation needed] Electric transport
The charges of free-standing particles are integer multiples of the elementary charge e; we say that electric charge is quantized. Michael Faraday, in his electrolysis experiments, was the first to note the discrete nature of electric charge. Robert Millikan's oil drop experiment demonstrated this fact directly, and measured the elementary charge.
Some examples are: Atmospheric electricity; Biefeld–Brown effect — Thought by the person who coined the name, Thomas Townsend Brown, to be an anti-gravity effect, it is generally attributed to electrohydrodynamics (EHD) or sometimes electro-fluid-dynamics, a counterpart to the well-known magneto-hydrodynamics.