Search results
Results from the WOW.Com Content Network
In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any m × n {\displaystyle m\times n} matrix.
The singular value decomposition (SVD) of is given as = † where and are unitary matrices and is a diagonal matrix of size , that holds the singular values from the largest (top left) in descending order.
If singular value decomposition (SVD) routines are available the optimal rotation, R, can be calculated using the following algorithm. First, calculate the SVD of the covariance matrix H, = where U and V are orthogonal and is diagonal. Next, record if the orthogonal matrices contain a reflection,
A number of solutions to the problem have appeared in literature, notably Davenport's q-method, [2] QUEST and methods based on the singular value decomposition (SVD). Several methods for solving Wahba's problem are discussed by Markley and Mortari.
K-SVD is an algorithm that performs SVD at its core to update the atoms of the dictionary one by one and basically is a generalization of K-means. It enforces that each element of the input data x i {\displaystyle x_{i}} is encoded by a linear combination of not more than T 0 {\displaystyle T_{0}} elements in a way identical to the MOD approach:
In linear algebra, the generalized singular value decomposition (GSVD) is the name of two different techniques based on the singular value decomposition (SVD).The two versions differ because one version decomposes two matrices (somewhat like the higher-order or tensor SVD) and the other version uses a set of constraints imposed on the left and right singular vectors of a single-matrix SVD.
In applied mathematics, k-SVD is a dictionary learning algorithm for creating a dictionary for sparse representations, via a singular value decomposition approach. k-SVD is a generalization of the k-means clustering method, and it works by iteratively alternating between sparse coding the input data based on the current dictionary, and updating the atoms in the dictionary to better fit the data.
In multilinear algebra, the higher-order singular value decomposition (HOSVD) of a tensor is a specific orthogonal Tucker decomposition. It may be regarded as one type of generalization of the matrix singular value decomposition. It has applications in computer vision, computer graphics, machine learning, scientific computing, and signal ...