Search results
Results from the WOW.Com Content Network
ϕ is known as a velocity potential for u. A velocity potential is not unique. If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable.
The Liénard–Wiechert potentials describe the classical electromagnetic effect of a moving electric point charge in terms of a vector potential and a scalar potential in the Lorenz gauge. Stemming directly from Maxwell's equations , these describe the complete, relativistically correct, time-varying electromagnetic field for a point charge in ...
A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [citation needed] The existence of arbitrary numbers of gauge functions ψ(r, t) corresponds to the U(1) gauge freedom of this theory. Gauge fixing can be done in many ...
The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators. For each group generator there necessarily arises a corresponding field (usually a vector field) called the gauge ...
Position vectors r and r′ used in the calculation. The starting point is Maxwell's equations in the potential formulation using the Lorenz gauge: =, = where φ(r, t) is the electric potential and A(r, t) is the magnetic vector potential, for an arbitrary source of charge density ρ(r, t) and current density J(r, t), and is the D'Alembert operator. [2]
Another symmetry arises from gauge freedom, which is intrinsic to the field equations. Fields which correspond to interactions may be gauge fields , which means they can be derived from a potential, and certain values of potentials correspond to the same value of the field.
Potential flow describes the velocity field as the gradient of a scalar function: the velocity potential. As a result, a potential flow is characterized by an irrotational velocity field , which is a valid approximation for several applications.
In electromagnetism, the Lorenz gauge condition or Lorenz gauge (after Ludvig Lorenz) is a partial gauge fixing of the electromagnetic vector potential by requiring = The name is frequently confused with Hendrik Lorentz , who has given his name to many concepts in this field. [ 1 ] (