Search results
Results from the WOW.Com Content Network
The nominal spherical critical mass for an untampered 235 U nuclear weapon is 56 kilograms (123 lb), [6] which would form a sphere 17.32 centimetres (6.82 in) in diameter. The material must be 85% or more of 235 U and is known as weapons grade uranium, though for a crude and inefficient weapon 20% enrichment is sufficient (called weapon(s)-usable).
Enriched uranium is a type of uranium in which the percent composition of uranium-235 (written 235 U) has been increased through the process of isotope separation.Naturally occurring uranium is composed of three major isotopes: uranium-238 (238 U with 99.2732–99.2752% natural abundance), uranium-235 (235 U, 0.7198–0.7210%), and uranium-234 (234 U, 0.0049–0.0059%).
Uranium-235 makes up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a fission chain reaction. It is the only fissile isotope that is a primordial nuclide or found in significant quantity in nature. Uranium-235 has a half-life of 703.8 million years.
Less than an amount of special nuclear material of moderate strategic significance (see category II above) but more than 15 grams (0.5 oz) of uranium-235 (contained in uranium enriched to 20 percent or more in U-235 isotope) or 15 grams of uranium-233 or 15 grams of plutonium-239 or the combination of 15 grams when computed by the equation ...
Natural uranium is made weapons-grade through isotopic enrichment. Initially only about 0.7% of it is fissile U-235, with the rest being almost entirely uranium-238 (U-238). They are separated by their differing masses. Highly enriched uranium is considered weapons-grade when it has been enriched to about 90% U-235. [citation needed]
Enriching uranium means increasing the percentage of uranium-235, the isotope of uranium that can be used in nuclear fission. Show comments. Advertisement. Advertisement. In Other News.
However, because of the low abundance of uranium-235 in natural uranium (which is overwhelmingly uranium-238), uranium needs to undergo enrichment so that enough uranium-235 is present. Uranium-238 is fissionable by fast neutrons and is fertile , meaning it can be transmuted to fissile plutonium-239 in a nuclear reactor .
Uranium-235, the fissile isotope of uranium used in nuclear reactors, makes up about 0.7% of uranium from ore. It is the only naturally occurring isotope capable of directly generating nuclear power. While uranium-235 can be "bred" from 234 U, a natural decay product of 238