Search results
Results from the WOW.Com Content Network
Molecular weight (M.W.) (for molecular compounds) and formula weight (F.W.) (for non-molecular compounds), are older terms for what is now more correctly called the relative molar mass (M r). [8] This is a dimensionless quantity (i.e., a pure number, without units) equal to the molar mass divided by the molar mass constant .
Atmospheric pressure, also known as air pressure or barometric pressure (after the barometer), is the pressure within the atmosphere of Earth.The standard atmosphere (symbol: atm) is a unit of pressure defined as 101,325 Pa (1,013.25 hPa), which is equivalent to 1,013.25 millibars, [1] 760 mm Hg, 29.9212 inches Hg, or 14.696 psi. [2]
A reference atmospheric model describes how the ideal gas properties (namely: pressure, temperature, density, and molecular weight) of an atmosphere change, primarily as a function of altitude, and sometimes also as a function of latitude, day of year, etc. A static atmospheric model has a more limited domain, excluding time.
is the molecular mass of dry air, approximately 4.81 × 10 −26 in kg. [note 1], the specific gas constant for dry air, which using the values presented above would be approximately 287.050 0676 in J⋅kg −1 ⋅K −1. [note 1] Therefore:
The definition of molecular weight is most authoritatively synonymous with relative molecular mass; however, in common practice, use of this terminology is highly variable. When the molecular weight is given with the unit Da, it is frequently as a weighted average similar to the molar mass but with different units.
Atmospheric pressure is the total weight of the air above unit area at the point where the pressure is measured. Thus air pressure varies with location and weather . If the entire mass of the atmosphere had a uniform density equal to sea-level density (about 1.2 kg/m 3 ) from sea level upwards, it would terminate abruptly at an altitude of 8.50 ...
Air is given a vapour density of one. For this use, air has a molecular weight of 28.97 atomic mass units, and all other gas and vapour molecular weights are divided by this number to derive their vapour density. [2] For example, acetone has a vapour density of 2 [3] in relation to air. That means acetone vapour is twice as heavy as air.
= specific heat of air at constant pressure, [MJ kg −1 °C −1], = ratio molecular weight of water vapor/dry air = 0.622. Both and are constants. Since atmospheric pressure, P, depends upon altitude, so does .