Search results
Results from the WOW.Com Content Network
In frequency (and thus energy), UV rays sit between the violet end of the visible spectrum and the X-ray range. The UV wavelength spectrum ranges from 399 nm to 10 nm and is divided into 3 sections: UVA, UVB, and UVC. UV is the lowest energy range energetic enough to ionize atoms, separating electrons from them, and thus causing chemical reactions.
Photon energy is the energy carried by a single photon. The amount of energy is directly proportional to the photon's electromagnetic frequency and thus, equivalently, is inversely proportional to the wavelength. The higher the photon's frequency, the higher its energy. Equivalently, the longer the photon's wavelength, the lower its energy.
The Planck relation [1] [2] [3] (referred to as Planck's energy–frequency relation, [4] the Planck–Einstein relation, [5] Planck equation, [6] and Planck formula, [7] though the latter might also refer to Planck's law [8] [9]) is a fundamental equation in quantum mechanics which states that the energy E of a photon, known as photon energy, is proportional to its frequency ν: =.
The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
In addition, the law may be expressed in other terms, such as the number of photons emitted at a certain wavelength, or the energy density in a volume of radiation. In the limit of low frequencies (i.e. long wavelengths), Planck's law tends to the Rayleigh–Jeans law , while in the limit of high frequencies (i.e. small wavelengths) it tends to ...
The more general description of matter waves corresponding to a single particle type (e.g. a single electron or neutron only) would have a form similar to = (,) (() /) where now there is an additional spatial term (,) in the front, and the energy has been written more generally as a function of the wave vector. The various terms given ...
The Compton wavelength is a quantum mechanical property of a particle, defined as the wavelength of a photon whose energy is the same as the rest energy of that particle (see mass–energy equivalence). It was introduced by Arthur Compton in 1923 in his explanation of the scattering of photons by electrons (a process known as Compton scattering).
This tradeoff between wavelength and energy in response to the collision is the Compton effect. Because of conservation of energy , the lost energy from the photon is transferred to the recoiling particle (such an electron would be called a "Compton Recoil electron").