Search results
Results from the WOW.Com Content Network
Kruskal's algorithm [1] finds a minimum spanning forest of an undirected edge-weighted graph. If the graph is connected , it finds a minimum spanning tree . It is a greedy algorithm that in each step adds to the forest the lowest-weight edge that will not form a cycle . [ 2 ]
The reverse-delete algorithm is an algorithm in graph theory used to obtain a minimum spanning tree from a given connected, edge-weighted graph. It first appeared in Kruskal (1956), but it should not be confused with Kruskal's algorithm which appears in the same paper. If the graph is disconnected, this algorithm will find a minimum spanning ...
Bertrand's postulate and a proof; Estimation of covariance matrices; Fermat's little theorem and some proofs; Gödel's completeness theorem and its original proof; Mathematical induction and a proof; Proof that 0.999... equals 1; Proof that 22/7 exceeds π; Proof that e is irrational; Proof that π is irrational
The algorithm was developed in 1930 by Czech mathematician Vojtěch Jarník [1] and later rediscovered and republished by computer scientists Robert C. Prim in 1957 [2] and Edsger W. Dijkstra in 1959. [3] Therefore, it is also sometimes called the Jarník's algorithm, [4] Prim–Jarník algorithm, [5] Prim–Dijkstra algorithm [6] or the DJP ...
The version given here is that proven by Nash-Williams; Kruskal's formulation is somewhat stronger. All trees we consider are finite. Given a tree T with a root, and given vertices v, w, call w a successor of v if the unique path from the root to w contains v, and call w an immediate successor of v if additionally the path from v to w contains no other vertex.
For example, Kruskal's algorithm processes edges in turn, deciding whether to include the edge in the MST based on whether it would form a cycle with all previously chosen edges. Both Prim's algorithm and Kruskal's algorithm require processes to know the state of the whole graph, which is very difficult to discover in the message-passing model.
A demo for Union-Find when using Kruskal's algorithm to find minimum spanning tree. Disjoint-set data structures model the partitioning of a set, for example to keep track of the connected components of an undirected graph. This model can then be used to determine whether two vertices belong to the same component, or whether adding an edge ...
The three pages Kruskal's algorithm, Boruvka's algorithm and Prim's algorithm should be merged into one article (possibly named minimum weight spanning tree algorithm), because they are all very similar greedy algorithms (the underlying concept is the same, they only differ, if at all, in use of data structures), which were discovered ...