Search results
Results from the WOW.Com Content Network
In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.
The p-value is not the probability that the observed effects were produced by random chance alone. [2] The p-value is computed under the assumption that a certain model, usually the null hypothesis, is true. This means that the p-value is a statement about the relation of the data to that hypothesis. [2]
To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .
For example, if both p-values are around 0.10, or if one is around 0.04 and one is around 0.25, the meta-analysis p-value is around 0.05. In statistics, Fisher's method, [1] [2] also known as Fisher's combined probability test, is a technique for data fusion or "meta-analysis" (analysis of analyses).
The p-value was introduced by Karl Pearson [6] in the Pearson's chi-squared test, where he defined P (original notation) as the probability that the statistic would be at or above a given level. This is a one-tailed definition, and the chi-squared distribution is asymmetric, only assuming positive or zero values, and has only one tail, the ...
In modern terms, he rejected the null hypothesis of equally likely male and female births at the p = 1/2 82 significance level. Laplace considered the statistics of almost half a million births. The statistics showed an excess of boys compared to girls. [5] He concluded by calculation of a p-value that the excess was a real, but unexplained ...
Note that a p-value of 0.01 suggests that 1% of the time a result at least that extreme would be obtained by chance; if hundreds or thousands of hypotheses (with mutually relatively uncorrelated independent variables) are tested, then one is likely to obtain a p-value less than 0.01 for many null hypotheses.
That is because Spearman's ρ limits the outlier to the value of its rank. In statistics , Spearman's rank correlation coefficient or Spearman's ρ , named after Charles Spearman [ 1 ] and often denoted by the Greek letter ρ {\displaystyle \rho } (rho) or as r s {\displaystyle r_{s}} , is a nonparametric measure of rank correlation ...