enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    If one root r of a polynomial P(x) of degree n is known then polynomial long division can be used to factor P(x) into the form (x − r)Q(x) where Q(x) is a polynomial of degree n − 1. Q(x) is simply the quotient obtained from the division process; since r is known to be a root of P(x), it is known that the remainder must be zero.

  3. Synthetic division - Wikipedia

    en.wikipedia.org/wiki/Synthetic_division

    Animation showing the use of synthetic division to find the quotient of + + + by .Note that there is no term in , so the fourth column from the right contains a zero.. In algebra, synthetic division is a method for manually performing Euclidean division of polynomials, with less writing and fewer calculations than long division.

  4. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Ruffini's rule can be used when one needs the quotient of a polynomial P by a binomial of the form . (When one needs only the remainder, the polynomial remainder theorem provides a simpler method.) A typical example, where one needs the quotient, is the factorization of a polynomial p ( x ) {\displaystyle p(x)} for which one knows a root r :

  5. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  6. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The rings for which such a theorem exists are called Euclidean domains, but in this generality, uniqueness of the quotient and remainder is not guaranteed. [8] Polynomial division leads to a result known as the polynomial remainder theorem: If a polynomial f(x) is divided by x − k, the remainder is the constant r = f(k). [9] [10]

  7. Mathematics of cyclic redundancy checks - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_cyclic...

    This capacity assumes that the generator polynomial is the product of + and a primitive polynomial of degree since all primitive polynomials except + have an odd number of non-zero coefficients. All burst errors of length n {\displaystyle n} will be detected by any polynomial of degree n {\displaystyle n} or greater which has a non-zero x 0 ...

  8. Ideal quotient - Wikipedia

    en.wikipedia.org/wiki/Ideal_quotient

    The above properties can be used to calculate the quotient of ideals in a polynomial ring given their generators. For example, if I = (f 1, f 2, f 3) and J = (g 1, g 2) are ideals in k[x 1, ..., x n], then

  9. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    This polynomial becomes the divisor in a polynomial long division, which takes the message as the dividend and in which the quotient is discarded and the remainder becomes the result. The important caveat is that the polynomial coefficients are calculated according to the arithmetic of a finite field , so the addition operation can always be ...