enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. LU decomposition - Wikipedia

    en.wikipedia.org/wiki/LU_decomposition

    An LU factorization with full pivoting involves both row and column permutations to find absolute maximum element in the whole submatrix: =, where L, U and P are defined as before, and Q is a permutation matrix that reorders the columns of A. [3]

  3. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    No (partial) pivoting is necessary for a strictly column diagonally dominant matrix when performing Gaussian elimination (LU factorization). The Jacobi and Gauss–Seidel methods for solving a linear system converge if the matrix is strictly (or irreducibly) diagonally dominant. Many matrices that arise in finite element methods are diagonally ...

  4. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    The Cholesky decomposition is commonly used in the Monte Carlo method for simulating systems with multiple correlated variables. The covariance matrix is decomposed to give the lower-triangular L. Applying this to a vector of uncorrelated observations in a sample u produces a sample vector Lu with the covariance properties of the system being ...

  5. Crout matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Crout_matrix_decomposition

    In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. [1] The Crout matrix decomposition algorithm differs slightly from the ...

  6. Gaussian elimination - Wikipedia

    en.wikipedia.org/wiki/Gaussian_elimination

    Such a partial pivoting may be required if, at the pivot place, the entry of the matrix is zero. In any case, choosing the largest possible absolute value of the pivot improves the numerical stability of the algorithm, when floating point is used for representing numbers.

  7. Incomplete LU factorization - Wikipedia

    en.wikipedia.org/wiki/Incomplete_LU_factorization

    is called an incomplete LU decomposition (with respect to the sparsity pattern ). The sparsity pattern of L and U is often chosen to be the same as the sparsity pattern of the original matrix A . If the underlying matrix structure can be referenced by pointers instead of copied, the only extra memory required is for the entries of L and U .

  8. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    When P is an identity matrix, the LUP decomposition reduces to the LU decomposition. Comments: The LUP and LU decompositions are useful in solving an n-by-n system of linear equations =. These decompositions summarize the process of Gaussian elimination in matrix form.

  9. Minimum degree algorithm - Wikipedia

    en.wikipedia.org/wiki/Minimum_degree_algorithm

    In numerical analysis, the minimum degree algorithm is an algorithm used to permute the rows and columns of a symmetric sparse matrix before applying the Cholesky decomposition, to reduce the number of non-zeros in the Cholesky factor. This results in reduced storage requirements and means that the Cholesky factor can be applied with fewer ...