Search results
Results from the WOW.Com Content Network
To compute the integral, we set n to its value and use the reduction formula to express it in terms of the (n – 1) or (n – 2) integral. The lower index integral can be used to calculate the higher index ones; the process is continued repeatedly until we reach a point where the function to be integrated can be computed, usually when its index is 0 or 1.
Consider the ring of integers.. The radical of the ideal of integer multiples of is (the evens).; The radical of is .; The radical of is .; In general, the radical of is , where is the product of all distinct prime factors of , the largest square-free factor of (see Radical of an integer).
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
The following is a list of integrals (antiderivative functions) of irrational functions. For a complete list of integral functions, see lists of integrals. Throughout this article the constant of integration is omitted for brevity.
Radical ideals (e.g., prime ideals) are integrally closed. The intersection of integrally closed ideals is integrally closed. The intersection of integrally closed ideals is integrally closed. In a normal ring , for any non-zerodivisor x and any ideal I , x I ¯ = x I ¯ {\displaystyle {\overline {xI}}=x{\overline {I}}} .
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
The ideal quotient corresponds to set difference in algebraic geometry. [1] More precisely, If W is an affine variety (not necessarily irreducible) and V is a subset of the affine space (not necessarily a variety), then
In number theory, the radical of a positive integer n is defined as the product of the distinct prime numbers dividing n. Each prime factor of n occurs exactly once as a factor of this product: r a d ( n ) = ∏ p ∣ n p prime p {\displaystyle \displaystyle \mathrm {rad} (n)=\prod _{\scriptstyle p\mid n \atop p{\text{ prime}}}p}