Search results
Results from the WOW.Com Content Network
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually Euclidean vectors.The name "triple product" is used for two different products, the scalar-valued scalar triple product and, less often, the vector-valued vector triple product.
Consider the vectors (polynomials) p 1 := 1, p 2 := x + 1, and p 3 := x 2 + x + 1. Is the polynomial x 2 − 1 a linear combination of p 1, p 2, and p 3? To find out, consider an arbitrary linear combination of these vectors and try to see when it equals the desired vector x 2 − 1. Picking arbitrary coefficients a 1, a 2, and a 3, we want
A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .
Given two homogeneous polynomials P(x, y) and Q(x, y) of respective total degrees p and q, their homogeneous resultant is the determinant of the matrix over the monomial basis of the linear map (,) +, where A runs over the bivariate homogeneous polynomials of degree q − 1, and B runs over the homogeneous polynomials of degree p − 1. In ...
The elements x 1, ..., x n can also be points of a Euclidean space, and, more generally, of an affine space over a field K. In this case the α i {\displaystyle \alpha _{i}} are elements of K (or R {\displaystyle \mathbb {R} } for a Euclidean space), and the affine combination is also a point.
By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3), the group of all rotation matrices, from an axis–angle representation. In terms of Lie theory, the Rodrigues' formula provides an algorithm to compute the exponential map from the Lie algebra so(3) to its Lie group SO(3).
The function must be a real-valued function of a fixed number of real-valued inputs. The caller passes in the initial point. The caller also passes in a set of initial search vectors. Typically N search vectors (say {, …,}) are passed in which are simply the normals aligned to each axis. [1]
However, there are exceptions to this rule. For example, the subspace of K 3 spanned by the three vectors (1, 0, 0), (0, 0, 1), and (2, 0, 3) is just the xz-plane, with each point on the plane described by infinitely many different values of t 1, t 2, t 3. In general, vectors v 1, ... , v k are called linearly independent if