Search results
Results from the WOW.Com Content Network
Sulfur can be found under several oxidation states in nature, mainly −2, −1, 0, +2 (apparent), +2.5 (apparent), +4, and +6. When two sulfur atoms are present in the same polyatomic oxyanion in an asymmetrical situation, i.e, each bound to different groups as in thiosulfate, the oxidation state calculated from the known oxidation state of accompanying atoms (H = +1, and O = −2) can be an ...
The fractionations of oxygen produced by sulfur disproportionation from elemental sulfur have been found to be higher, with reported values from 8 to 18.4‰, which suggests a kinetic isotope effect in the pathways involved in oxidation of elemental sulfur to sulfate, although more studies are necessary to determine what are the specific steps ...
SO 2− 4 + 4H 2 → H 2 S + 2H 2 O + 2OH −. Sulfide Oxidation. Under aerobic conditions, sulfide is oxidized to sulfur and then sulfate by sulfur oxidizing bacteria, such as Thiobacillus, Beggiatoa and many others. Under anaerobic conditions, sulfide can be oxidized to sulfur and then sulfate by Purple and Green sulfur bacteria. H 2 S → S ...
In addition to sulfur, A. thiooxidans can use thiosulfate or tetrathionate as sources of energy, but growth in a liquid medium on thiosulfate is slow, generally taking about 10 to 12 days under favorable conditions as opposed to only 4 to 5 days for growth on elemental sulfur, as demonstrated by the change in pH and turbidity. [2]
Sulfur is metabolized by all organisms, from bacteria and archaea to plants and animals. Sulfur can have an oxidation state from -2 to +6 and is reduced or oxidized by a diverse range of organisms. [1] The element is present in proteins, sulfate esters of polysaccharides, steroids, phenols, and sulfur-containing coenzymes. [2]
The mechanism for the action of the catalyst comprises two steps: Oxidation of SO 2 into SO 3 by V 5+: 2SO 2 + 4V 5+ + 2O 2− → 2SO 3 + 4V 4+ Oxidation of V 4+ back into V 5+ by dioxygen (catalyst regeneration): 4V 4+ + O 2 → 4V 5+ + 2O 2−; Hot sulfur trioxide passes through the heat exchanger and is dissolved in concentrated H 2 SO 4 in ...
The hybrid sulfur cycle (HyS) is a two-step water-splitting process intended to be used for hydrogen production. Based on sulfur oxidation and reduction, it is classified as a hybrid thermochemical cycle because it uses an electrochemical (instead of a thermochemical) reaction for one of the two steps. The remaining thermochemical step is ...
Water oxidation is one of the half reactions of water splitting: 2H 2 O → O 2 + 4H + + 4e − Oxidation (generation of dioxygen) 4H + + 4e − → 2H 2 Reduction (generation of dihydrogen) 2H 2 O → 2H 2 + O 2 Total Reaction Of the two half reactions, the oxidation step is the most demanding because it requires the coupling of 4 electron and ...