Search results
Results from the WOW.Com Content Network
In biochemistry, denaturation is a process in which proteins or nucleic acids lose folded structure present in their native state due to various factors, including application of some external stress or compound, such as a strong acid or base, a concentrated inorganic salt, an organic solvent (e.g., alcohol or chloroform), agitation and radiation, or heat. [3]
If the answer is yes then the reaction is the general type. Since most enzymes have an optimum pH of 6 to 7, the amino acids in the side chain usually have a pK a of 4~10. Candidate include aspartate, glutamate, histidine, cysteine. These acids and bases can stabilise the nucleophile or electrophile formed during the catalysis by providing ...
RuBisCO is important biologically because it catalyzes the primary chemical reaction by which inorganic carbon enters the biosphere.While many autotrophic bacteria and archaea fix carbon via the reductive acetyl CoA pathway, the 3-hydroxypropionate cycle, or the reverse Krebs cycle, these pathways are relatively small contributors to global carbon fixation compared to that catalyzed by RuBisCO.
Superoxide is known to denature enzymes, oxidize lipids, and fragment DNA. [21] SODs catalyze the production of O 2 and H 2 O 2 from superoxide (O − 2), which results in less harmful reactants. When acclimating to increased levels of oxidative stress, SOD concentrations typically increase with the degree of stress conditions.
The heat shock response (HSR) is a cell stress response that increases the number of molecular chaperones to combat the negative effects on proteins caused by stressors such as increased temperatures, oxidative stress, and heavy metals. [1]
Picture of an SDS-PAGE. The molecular markers (ladder) are in the left lane. Polyacrylamide gel electrophoresis (PAGE) is a technique widely used in biochemistry, forensic chemistry, genetics, molecular biology and biotechnology to separate biological macromolecules, usually proteins or nucleic acids, according to their electrophoretic mobility.
The DNase enzyme relies on the presence of a divalent cation, which is usually Ca 2+, for proper function. The active site of DNase I includes two histidine residues (His134 and His252) and two acidic residues ( Glu 78 and Asp 212), all of which are critical for the general acid-base catalysis of phosphodiester bonds.
The reaction it catalyzes is: pyruvate + HCO − 3 + ATP → oxaloacetate + ADP + P. It is an important anaplerotic reaction that creates oxaloacetate from pyruvate. PC contains a biotin prosthetic group [1] and is typically localized to the mitochondria in eukaryotes with exceptions to some fungal species such as Aspergillus nidulans which have a cytosolic PC.