enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discrete logarithm - Wikipedia

    en.wikipedia.org/wiki/Discrete_logarithm

    For any number a in this list, one can compute log 10 a. For example, log 10 10000 = 4, and log 10 0.001 = −3. These are instances of the discrete logarithm problem. Other base-10 logarithms in the real numbers are not instances of the discrete logarithm problem, because they involve non-integer exponents.

  3. Binary logarithm - Wikipedia

    en.wikipedia.org/wiki/Binary_logarithm

    Every family of sets with n different sets has at least log 2 n elements in its union, with equality when the family is a power set. [30] Every partial cube with n vertices has isometric dimension at least log 2 n, and has at most ⁠ 1 / 2 ⁠ n log 2 n edges, with equality when the partial cube is a hypercube graph. [31]

  4. Find first set - Wikipedia

    en.wikipedia.org/wiki/Find_first_set

    The log base 2 can be used to anticipate whether a multiplication will overflow, since ⌈log 2 (xy)⌉ ≤ ⌈log 2 (x)⌉ + ⌈log 2 (y)⌉. [53] Count leading zeros and count trailing zeros can be used together to implement Gosper's loop-detection algorithm, [54] which can find the period of a function of finite range using limited resources ...

  5. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...

  6. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    The graph of the logarithm base 2 crosses the x-axis at x = 1 and passes through the points (2, 1), (4, 2), and (8, 3), depicting, e.g., log 2 (8) = 3 and 2 3 = 8. The graph gets arbitrarily close to the y-axis, but does not meet it. Addition, multiplication, and exponentiation are three of the most fundamental arithmetic operations.

  7. Logit - Wikipedia

    en.wikipedia.org/wiki/Logit

    If p is a probability, then p/(1 − p) is the corresponding odds; the logit of the probability is the logarithm of the odds, i.e.: ⁡ = ⁡ = ⁡ ⁡ = ⁡ = ⁡ (). The base of the logarithm function used is of little importance in the present article, as long as it is greater than 1, but the natural logarithm with base e is the one most often used.

  8. List of integrals of logarithmic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of logarithmic functions. For a complete list of integral functions, see list of integrals. Note: x > 0 is assumed throughout this article, and the constant of integration is omitted for simplicity.

  9. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The natural logarithm of x is generally written as ln x, log e x, or sometimes, if the base e is implicit, simply log x. [2] [3] Parentheses are sometimes added for clarity, giving ln(x), log e (x), or log(x). This is done particularly when the argument to the logarithm is not a single symbol, so as to prevent ambiguity.