Search results
Results from the WOW.Com Content Network
Demonstration model of a direct methanol fuel cell (black layered cube) in its enclosure Scheme of a proton-conducting fuel cell. A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) [1] into electricity through a pair of redox reactions. [2]
Electro-chemical reaction Diagram of PEM MEA. A membrane electrode assembly (MEA) is an assembled stack of proton-exchange membranes (PEM) or alkali anion exchange membrane (AAEM), catalyst and flat plate electrode used in fuel cells and electrolyzers. [1] [2]
If the fuel is a light hydrocarbon, for example, methane, another function of the anode is to act as a catalyst for steam reforming the fuel into hydrogen. This provides another operational benefit to the fuel cell stack because the reforming reaction is endothermic, which cools the stack internally.
Block diagram of a fuel cell. Source I (Paulsmith99 ) created this work entirely by myself, based on the original png version. Date 17:35, 25 June 2010 (UTC) Author Paulsmith99 Permission (Reusing this file) See below. Other versions Fuel Cell Block Diagram.png
SOEC 60 cell stack. A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon dioxide) [1] by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas [2] (and/or carbon monoxide) and oxygen.
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with hydrogen concentration of about 50 to 75 %.
Diagram of a phosphoric acid fuel cell. Phosphoric acid fuel cells (PAFC) are a type of fuel cell that uses liquid phosphoric acid as an electrolyte. They were the first fuel cells to be commercialized. Developed in the mid-1960s and field-tested since the 1970s, they have improved significantly in stability, performance, and cost.
The car "Schluckspecht" completed a successful test drive on Nogaro Circuit, powered by a DEFC stack giving an output voltage of 20 to 45 V (depending on load). [4] Various prototypes of Direct Ethanol Fuel Cell Stack mobile phone chargers have been built [5] featuring voltages from 2V to 7V and powers from 800 mW to 2W [6] were built and tested.