enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decay energy - Wikipedia

    en.wikipedia.org/wiki/Decay_energy

    Types of radioactive decay include gamma ray; beta decay (decay energy is divided between the emitted electron and the neutrino which is emitted at the same time) alpha decay; The decay energy is the mass difference Δm between the parent and the daughter atom and particles. It is equal to the energy of radiation E.

  3. Gamma ray - Wikipedia

    en.wikipedia.org/wiki/Gamma_ray

    For example, modern high-energy X-rays produced by linear accelerators for megavoltage treatment in cancer often have higher energy (4 to 25 MeV) than do most classical gamma rays produced by nuclear gamma decay. One of the most common gamma ray emitting isotopes used in diagnostic nuclear medicine, technetium-99m, produces gamma radiation of ...

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Internal conversion decay, like isomeric transition gamma decay and neutron emission, involves the release of energy by an excited nuclide, without the transmutation of one element into another. Rare events that involve a combination of two beta-decay-type events happening simultaneously are known (see below).

  5. Photodisintegration - Wikipedia

    en.wikipedia.org/wiki/Photodisintegration

    The incoming gamma ray effectively knocks one or more neutrons, protons, or an alpha particle out of the nucleus. [1] The reactions are called (γ,n), (γ,p), and (γ,α), respectively. Photodisintegration is endothermic (energy absorbing) for atomic nuclei lighter than iron and sometimes exothermic (energy releasing) for atomic nuclei heavier ...

  6. Decay scheme - Wikipedia

    en.wikipedia.org/wiki/Decay_scheme

    The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.

  7. Curie (unit) - Wikipedia

    en.wikipedia.org/wiki/Curie_(unit)

    The number of decays that will occur in one second in one gram of atoms of a particular radionuclide is known as the specific activity of that radionuclide. The activity of a sample decreases with time because of decay. The rules of radioactive decay may be used to convert activity to an actual number of atoms. They state that 1 Ci of ...

  8. Specific activity - Wikipedia

    en.wikipedia.org/wiki/Specific_activity

    One gram of rubidium-87 and a radioactivity count rate that, after taking solid angle effects into account, is consistent with a decay rate of 3200 decays per second corresponds to a specific activity of 3.2 × 10 6 Bq/kg. Rubidium atomic mass is 87 g/mol, so one gram is 1/87 of a mole. Plugging in the numbers:

  9. Iodine-123 - Wikipedia

    en.wikipedia.org/wiki/Iodine-123

    Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).