enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Bézier_curve

    The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...

  3. Comparison of 3D computer graphics software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_3D_computer...

    Name Windows macOS Linux Unix BSD iOS Android Other 3ds Max: Yes No No No No No No AC3D: Yes Yes Yes No No No No Art of Illusion — — — — — — — Java virtual machine

  4. Composite Bézier curve - Wikipedia

    en.wikipedia.org/wiki/Composite_Bézier_curve

    Béziergon – The red béziergon passes through the blue vertices, the green points are control points that determine the shape of the connecting Bézier curves. In geometric modelling and in computer graphics, a composite Bézier curve or Bézier spline is a spline made out of Bézier curves that is at least continuous. In other words, a ...

  5. Bézier surface - Wikipedia

    en.wikipedia.org/wiki/Bézier_surface

    The geometry of a single bicubic patch is thus completely defined by a set of 16 control points. These are typically linked up to form a B-spline surface in a similar way as Bézier curves are linked up to form a B-spline curve. Simpler Bézier surfaces are formed from biquadratic patches (m = n = 2), or Bézier triangles.

  6. Form-Z - Wikipedia

    en.wikipedia.org/wiki/Form-Z

    Form·Z allows design in 3D or in 2D, using numeric or interactive graphic input through either line or smooth shaded drawings ().Modeling features include Boolean solids to generate complex composite objects; the ability to create curved surfaces from splines, including NURBS and Bézier/Coons patches; mechanical and organic forms using the previous as well as metaforms, patches, subdivisions ...

  7. De Casteljau's algorithm - Wikipedia

    en.wikipedia.org/wiki/De_Casteljau's_algorithm

    In the mathematical field of numerical analysis, De Casteljau's algorithm is a recursive method to evaluate polynomials in Bernstein form or Bézier curves, named after its inventor Paul de Casteljau. De Casteljau's algorithm can also be used to split a single Bézier curve into two Bézier curves at an arbitrary parameter value.

  8. Paul de Casteljau - Wikipedia

    en.wikipedia.org/wiki/Paul_de_Casteljau

    Paul de Casteljau (19 November 1930 – 24 March 2022) was a French physicist and mathematician. In 1959, while working at Citroën, he developed an algorithm for evaluating calculations on a certain family of curves, which would later be formalized and popularized by engineer Pierre Bézier, leading to the curves widely known as Bézier curves.

  9. Blossom (functional) - Wikipedia

    en.wikipedia.org/wiki/Blossom_(functional)

    In numerical analysis, a blossom is a functional that can be applied to any polynomial, but is mostly used for Bézier and spline curves and surfaces. The blossom of a polynomial ƒ , often denoted B [ f ] , {\displaystyle {\mathcal {B}}[f],} is completely characterised by the three properties: