Search results
Results from the WOW.Com Content Network
The Dataframe API was released as an abstraction on top of the RDD, followed by the Dataset API. In Spark 1.x, the RDD was the primary application programming interface (API), but as of Spark 2.x use of the Dataset API is encouraged [3] even though the RDD API is not deprecated. [4] [5] The RDD technology still underlies the Dataset API. [6] [7]
Subsets of data can be selected by column name, index, or Boolean expressions. For example, df[df['col1'] > 5] will return all rows in the DataFrame df for which the value of the column col1 exceeds 5. [4]: 126–128 Data can be grouped together by a column value, as in df['col1'].groupby(df['col2']), or by a function which is applied to the index.
For example, in the Pascal programming language, the declaration type MyTable = array [1.. 4, 1.. 2] of integer, defines a new array data type called MyTable. The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices.
In Lua, "table" is a fundamental type that can be used either as an array (numerical index, fast) or as an associative array. The keys and values can be of any type, except nil. The following focuses on non-numerical indexes. A table literal is written as { value, key = value, [index] = value, ["non id string"] = value }. For example:
The base index of an array can be freely chosen. Usually programming languages allowing n-based indexing also allow negative index values and other scalar data types like enumerations, or characters may be used as an array index. Using zero based indexing is the design choice of many influential programming languages, including C, Java and Lisp ...
In computer science and statistics, the Jaro–Winkler similarity is a string metric measuring an edit distance between two sequences. It is a variant of the Jaro distance metric [1] (1989, Matthew A. Jaro) proposed in 1990 by William E. Winkler.
Word2vec is a technique in natural language processing (NLP) for obtaining vector representations of words. These vectors capture information about the meaning of the word based on the surrounding words.