Search results
Results from the WOW.Com Content Network
In astronomy, dark matter is an invisible and hypothetical form of matter that does not interact with light or other electromagnetic radiation.Dark matter is implied by gravitational effects which cannot be explained by general relativity unless more matter is present than can be observed.
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.. There exists no formal definition of a WIMP, but broadly, it is an elementary particle which interacts via gravity and any other force (or forces) which is as weak as or weaker than the weak nuclear force, but also non-vanishing in strength.
The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. . Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, [1] dark matter particles in our galaxy have never been directly detected in an expe
Dark matter makes up 85% of all matter in the Universe, but astronomers have never seen it. The mass which we call dark matter does not give off light, heat, radio waves, or any other form of ...
Gravitational wave astronomy helps understand the early universe, test theories of gravity, and reveal the distribution of dark matter and dark energy. Particularly, it can help find the Hubble constant, which tells about the rate of accelerated expansion of the universe. All of these open doors to a physics beyond the Standard Model (BSM).
As "dark matter", baryonic dark matter is undetectable by its emitted radiation, but its presence can be inferred from gravitational effects on visible matter. This form of dark matter is composed of "baryons", heavy subatomic particles such as protons and neutrons and combinations of these, including non-emitting ordinary atoms.
Sterile neutrinos are proposed to be right handed, meaning they would only interact with gravity. Sterile neutrinos are viable dark matter candidates because they only interact via gravity, as is predicted for dark matter. Unfortunately, most current theories predict cold dark matter, meaning dark matter candidates that are non-relativistic.