Search results
Results from the WOW.Com Content Network
In propositional logic, conjunction elimination (also called and elimination, ∧ elimination, [1] or simplification) [2] [3] [4] is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true.
Each logic operator can be used in an assertion about variables and operations, showing a basic rule of inference. Examples: The column-14 operator (OR), shows Addition rule: when p=T (the hypothesis selects the first two lines of the table), we see (at column-14) that p∨q=T.
Here is an example of an argument that fits the form conjunction introduction: Bob likes apples. Bob likes oranges. Therefore, Bob likes apples and Bob likes oranges. Conjunction elimination is another classically valid, simple argument form. Intuitively, it permits the inference from any conjunction of either element of that conjunction.
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
An example: we are given the conditional fact that if it is a bear, then it can swim. Then, all 4 possibilities in the truth table are compared to that fact. If it is a bear, then it can swim — T; If it is a bear, then it can not swim — F; If it is not a bear, then it can swim — T because it doesn’t contradict our initial fact.
definition: is defined as metalanguage:= means "from now on, is defined to be another name for ." This is a statement in the metalanguage, not the object language. The notation may occasionally be seen in physics, meaning the same as :=.
A discussion of the introduction and elimination forms for higher-order logic is beyond the scope of this article. It is possible to be in-between first-order and higher-order logics. For example, second-order logic has two kinds of propositions, one kind quantifying over terms, and the second kind quantifying over propositions of the first kind.
In propositional logic, modus tollens (/ ˈ m oʊ d ə s ˈ t ɒ l ɛ n z /) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") [2] and denying the consequent, [3] is a deductive argument form and a rule of inference.