enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  3. Mach number - Wikipedia

    en.wikipedia.org/wiki/Mach_number

    The subsonic speed range is that range of speeds within which, all of the airflow over an aircraft is less than Mach 1. The critical Mach number (Mcrit) is lowest free stream Mach number at which airflow over any part of the aircraft first reaches Mach 1. So the subsonic speed range includes all speeds that are less than Mcrit. Transonic: 0.8–1.2

  4. Prandtl–Meyer function - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Meyer_function

    In aerodynamics, the Prandtl–Meyer function describes the angle through which a flow turns isentropically from sonic velocity (M=1) to a Mach (M) number greater than 1. The maximum angle through which a sonic ( M = 1) flow can be turned around a convex corner is calculated for M = ∞ {\displaystyle \infty } .

  5. Coffin corner (aerodynamics) - Wikipedia

    en.wikipedia.org/wiki/Coffin_corner_(aerodynamics)

    A Mach number of 1.0 indicates an airspeed equal to the speed of sound in that air. Because the speed of sound increases with air temperature, and air temperature generally decreases with altitude, the true airspeed for a given Mach number generally decreases with altitude. [2] As an airplane moves through the air faster, the airflow over parts ...

  6. Equivalent airspeed - Wikipedia

    en.wikipedia.org/wiki/Equivalent_airspeed

    where a 0 is 1,225 km/h (661.45 kn) (the standard speed of sound at 15 °C), M is the Mach number, P is static pressure, and P 0 is standard sea level pressure (1013.25 hPa). Combining the above with the expression for Mach number gives EAS as a function of impact pressure and static pressure (valid for subsonic flow):

  7. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    The Buckingham pi theorem then leads to a third dimensionless group, the ratio of the relative velocity to the speed of sound, which is known as the Mach number. Consequently when a body is moving relative to a gas, the drag coefficient varies with the Mach number and the Reynolds number.

  8. Prandtl–Meyer expansion fan - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Meyer_expansion_fan

    Across the expansion fan, the flow accelerates (velocity increases) and the Mach number increases, while the static pressure, temperature and density decrease. Since the process is isentropic, the stagnation properties (e.g. the total pressure and total temperature) remain constant across the fan.

  9. Prandtl–Glauert transformation - Wikipedia

    en.wikipedia.org/wiki/Prandtl–Glauert...

    is the freestream Mach number, and ,, are the surface-normal vector components. The unknown variable is the perturbation potential ϕ ( x , y , z ) {\displaystyle \phi (x,y,z)} , and the total velocity is given by its gradient plus the freestream velocity V ∞ {\displaystyle V_{\infty }} which is assumed here to be along x {\displaystyle x} .