Search results
Results from the WOW.Com Content Network
The azimuth is the angle formed between a reference direction (in this example north) and a line from the observer to a point of interest projected on the same plane as the reference direction orthogonal to the zenith. An azimuth (/ ˈ æ z ə m ə θ / ⓘ; from Arabic: اَلسُّمُوت, romanized: as-sumūt, lit.
Radar is a system that uses radio waves to determine the distance (), direction (azimuth and elevation angles), and radial velocity of objects relative to the site. It is a radiodetermination method [1] used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.
At any range, with similar azimuth and elevation angles and as viewed by a radar with an unmodulated pulse, the range resolution is approximately equal in distance to half of the pulse duration times the speed of light (approximately 300 meters per microsecond). Radar echoes, showing a representation of the carrier
Weather radar in Norman, Oklahoma with rainshaft Weather (WF44) radar dish University of Oklahoma OU-PRIME C-band, polarimetric, weather radar during construction. Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type (rain, snow, hail etc.).
Angles available on a weather radar. In 1954, [2] McGill University obtained a new radar (CPS-9) which had a better resolution and used FASE (Fast Azimuth Slow Elevation) to program multi-angle soundings of the atmosphere.
A plan position indicator (PPI) is a type of radar display that represents the radar antenna in the center of the display, with the distance from it and height above ground drawn as concentric circles. As the radar antenna rotates, a radial trace on the PPI sweeps in unison with it about the center point. It is the most common type of radar ...
In addition to range, the more common two-dimensional radar provides only azimuth for direction, whereas the 3D radar also provides elevation. Applications include weather monitoring, air defense, and surveillance. The information provided by 3D radar has long been required, particularly for air defence and interception. Interceptors must be ...
Monopulse radar is a radar system that uses additional encoding of the radio signal to provide accurate directional information. The name refers to its ability to extract range and direction from a single signal pulse. Monopulse radar avoids problems seen in conical scanning radar systems, which can be confused by rapid changes in signal strength.