enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Frustum - Wikipedia

    en.wikipedia.org/wiki/Frustum

    In geometry, a frustum (Latin for 'morsel'); [a] (pl.: frusta or frustums) is the portion of a solid (normally a pyramid or a cone) that lies between two parallel planes cutting the solid. In the case of a pyramid, the base faces are polygonal and the side faces are trapezoidal .

  3. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    The lateral surface area of a right circular cone is = where is the radius of the circle at the bottom of the cone and is the slant height of the cone. [4] The surface area of the bottom circle of a cone is the same as for any circle, . Thus, the total surface area of a right circular cone can be expressed as each of the following: Radius and ...

  4. Tree volume measurement - Wikipedia

    en.wikipedia.org/wiki/Tree_volume_measurement

    The formula for the volume of a frustum of a paraboloid [23] [24] is: V = (π h/2)(r 1 2 + r 2 2), where h = height of the frustum, r 1 is the radius of the base of the frustum, and r 2 is the radius of the top of the frustum. This allows us to use a paraboloid frustum where that form appears more appropriate than a cone.

  5. Lateral surface - Wikipedia

    en.wikipedia.org/wiki/Lateral_surface

    For a cube the lateral surface area would be the area of the four sides. If the edge of the cube has length a, the area of one square face A face = a ⋅ a = a 2. Thus the lateral surface of a cube will be the area of four faces: 4a 2. More generally, the lateral surface area of a prism is the sum of the areas of the sides of the prism. [1]

  6. Tree measurement - Wikipedia

    en.wikipedia.org/wiki/Tree_measurement

    Cumulative trunk volume is calculated by adding the volume of the measured segments of the tree together. The volume of each segment is calculated as the volume of a frustum of a cone where: Volume= h(π/3)(r 1 2 + r 2 2 +r 1 r 2) Frustum of a cone

  7. Bifrustum - Wikipedia

    en.wikipedia.org/wiki/Bifrustum

    For a regular n-gonal bifrustum with the equatorial polygon sides a, bases sides b and semi-height (half the distance between the planes of bases) h, the lateral surface area A l, total area A and volume V are: [2] and [3] = (+) (⁡) + = + ⁡ = + + ⁡ Note that the volume V is twice the volume of a frusta.

  8. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.

  9. Spherical segment - Wikipedia

    en.wikipedia.org/wiki/Spherical_segment

    A spherical segment Pair of parallel planes intersecting a sphere forming a spherical segment (i.e., a spherical frustum) Terminology for spherical segments.. In geometry, a spherical segment is the solid defined by cutting a sphere or a ball with a pair of parallel planes.