Search results
Results from the WOW.Com Content Network
Central pattern generators (CPGs) are self-organizing biological neural circuits [1] [2] that produce rhythmic outputs in the absence of rhythmic input. [3] [4] [5] They are the source of the tightly-coupled patterns of neural activity that drive rhythmic and stereotyped motor behaviors like walking, swimming, breathing, or chewing.
This feedback allows for more fine control of movement. In the brain, proprioceptive integration occurs in the somatosensory cortex, and motor commands are generated in the motor cortex. In the spinal cord, sensory and motor signals are integrated and modulated by motor neuron pools called central pattern generators (CPGs).
The motor cortex can be divided into three areas: 1. The primary motor cortex is the main contributor to generating neural impulses that pass down to the spinal cord and control the execution of movement. However, some of the other motor areas in the brain also play a role in this function.
Simplified diagram of frontal cortex to striatum to thalamus pathways. There are five defined frontostriatal circuits: motor and oculomotor circuits originating in the frontal eye fields are involved in motor functions; while dorsolateral prefrontal, orbital frontal, and anterior cingulate circuits are involved in executive functions, social behavior and motivational states. [2]
Each motor controller in an MCC can be specified with a range of options such as separate control transformers, pilot lamps, control switches, extra control terminal blocks, various types of thermal or solid-state overload protection relays, or various classes of power fuses or types of circuit breakers. A motor control center can either be ...
The PNS includes motor neurons, mediating voluntary movement; the autonomic nervous system, comprising the sympathetic nervous system and the parasympathetic nervous system and regulating involuntary functions; and the enteric nervous system, a semi-independent part of the nervous system whose function is to control the gastrointestinal system.
Open loop control is a feed forward form of motor control, and is used to control rapid, ballistic movements that end before any sensory information can be processed. To best study this type of control, most research focuses on deafferentation studies, often involving cats or monkeys whose sensory nerves have been disconnected from their spinal ...
A motor program is an abstract metaphor of the central organization of movement and control of the many degrees of freedom involved in performing an action. Biologically realistic alternatives to the metaphor of the "motor program" are represented by central pattern generators .