Search results
Results from the WOW.Com Content Network
In computing, compiler correctness is the branch of computer science that deals with trying to show that a compiler behaves according to its language specification. [ citation needed ] Techniques include developing the compiler using formal methods and using rigorous testing (often called compiler validation) on an existing compiler.
This example specifies a valid D function called "factorial" which would typically be evaluated at run time. The use of enum tells the compiler that the initializer for the variables must be computed at compile time. Note that the arguments to the function must be able to be resolved at compile time as well. [4]
Bounds-checking elimination could eliminate the second check if the compiler or runtime can determine that neither the array size nor the index could change between the two array operations. Another example occurs when a programmer loops over the elements of the array, and the loop condition guarantees that the index is within the bounds of the ...
C++ enforces stricter typing rules (no implicit violations of the static type system [1]), and initialization requirements (compile-time enforcement that in-scope variables do not have initialization subverted) [7] than C, and so some valid C code is invalid in C++. A rationale for these is provided in Annex C.1 of the ISO C++ standard.
The ANSI/ISO C Specification Language (ACSL) is a specification language for C programs, using Hoare style pre- and postconditions and invariants, that follows the design by contract paradigm. Specifications are written as C annotation comments to the C program, which hence can be compiled with any C compiler.
In computer programming, bounds checking is any method of detecting whether a variable is within some bounds before it is used. It is usually used to ensure that a number fits into a given type (range checking), or that a variable being used as an array index is within the bounds of the array (index checking).
Fig. 1: A binary search tree of size 9 and depth 3, with 8 at the root. In computer science, a binary search tree (BST), also called an ordered or sorted binary tree, is a rooted binary tree data structure with the key of each internal node being greater than all the keys in the respective node's left subtree and less than the ones in its right subtree.
Binary-code compatibility (binary compatible or object-code compatible) is a property of a computer system, meaning that it can run the same executable code, typically machine code for a general-purpose computer central processing unit (CPU), that another computer system can run.