Search results
Results from the WOW.Com Content Network
Boric acid is a weak acid, with pK a (the pH at which buffering is strongest because the free acid and borate ion are in equal concentrations) of 9.24 in pure water at 25 °C. But apparent p K a is substantially lower in swimming pool or ocean waters because of interactions with various other molecules in solution.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
This page provides supplementary chemical data on boric acid. Thermodynamic properties. Phase behavior Triple point? K (? °C), ? Pa Critical point? K (? °C), ?
Commonly used mineral acids are sulfuric acid (H 2 SO 4), hydrochloric acid (HCl) and nitric acid (HNO 3); these are also known as bench acids. [1] Mineral acids range from superacids (such as perchloric acid) to very weak ones (such as boric acid). Mineral acids tend to be very soluble in water and insoluble in organic solvents.
Boric is a chemistry term that refers to substances containing boron, such as: boric acid or orthoboric acid, B(OH) 3; metaboric acid, an acid containing boron, HBO 2; tetraboric acid or pyroboric acid, an acid containing boron, H 2 B 4 O 7; boric oxide, specifically boron trioxide B 2 O 3; a boric ester, or organic borate; Boric may also refer to:
The result: 1 liter of water can dissolve 1.34 × 10 −5 moles of AgCl at room temperature. Compared with other salts, AgCl is poorly soluble in water. For instance, table salt (NaCl) has a much higher K sp = 36 and is, therefore, more soluble. The following table gives an overview of solubility rules for various ionic compounds.
Barium borate can be prepared by reaction of an aqueous solution of boric acid with barium hydroxide. The prepared γ-barium borate contains water of crystallization that can not be completely removed by drying at 120 °C. Dehydrated γ-barium borate can be prepared by heating to 300–400 °C.