Search results
Results from the WOW.Com Content Network
Extranuclear inheritance (also known as cytoplasmic inheritance) is a form of non-Mendelian inheritance also first discovered by Carl Correns in 1908. [9] While working with Mirabilis jalapa, Correns observed that leaf colour was dependent only on the genotype of the maternal parent.
Mendel himself warned that care was needed in extrapolating his patterns to other organisms or traits. Indeed, many organisms have traits whose inheritance works differently from the principles he described; these traits are called non-Mendelian. [44] [45] For example, Mendel focused on traits whose genes have only two alleles, such as "A" and "a".
Uniparental inheritance is a non-Mendelian form of inheritance that consists of the transmission of genotypes from one parental type to all progeny. That is, all the genes in offspring will originate from only the mother or only the father.
Purely Mendelian traits are a minority of all traits, since most phenotypic traits exhibit incomplete dominance, codominance, and contributions from many genes. If a trait is genetically influenced, but not well characterized by Mendelian inheritance, it is non-Mendelian.
Mendelian traits behave according to the model of monogenic or simple gene inheritance in which one gene corresponds to one trait. Discrete traits (as opposed to continuously varying traits such as height) with simple Mendelian inheritance patterns are relatively rare in nature, and many of the clearest examples in humans cause disorders.
In genetics, paternal mtDNA transmission and paternal mtDNA inheritance refer to the incidence of mitochondrial DNA (mtDNA) being passed from a father to his offspring. . Paternal mtDNA inheritance is observed in a small proportion of species; in general, mtDNA is passed unchanged from a mother to her offspring, [1] making it an example of non-Mendelian inh
Mitochondrial inheritance is therefore non-Mendelian, as Mendelian inheritance presumes that half the genetic material of a fertilized egg derives from each parent. This allowed the creation of mitochondrial DNA haplogroups to study population genetics.
Lethal alleles may specifically refer to embryonically lethal alleles, in which the fetus will never survive to term. Such alleles are a cause of non-Mendelian patterns of inheritance, such as the observation of traits in a 2:1 ratio.