enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  3. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]

  4. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    Within the realm of Newtonian mechanics, an inertial frame of reference, or inertial reference frame, is one in which Newton's first law of motion is valid. [17] However, the principle of special relativity generalizes the notion of an inertial frame to include all physical laws, not simply Newton's first law.

  5. Fictitious force - Wikipedia

    en.wikipedia.org/wiki/Fictitious_force

    Assuming Newton's second law in the form F = ma, fictitious forces are always proportional to the mass m. The fictitious force that has been called an inertial force [7] [8] [9] is also referred to as a d'Alembert force, [10] [11] or sometimes as a pseudo force. [12] D'Alembert's principle is just another way of formulating Newton's second law ...

  6. Centrifugal force - Wikipedia

    en.wikipedia.org/wiki/Centrifugal_force

    Newton's law of motion for a particle of mass m written in vector form is: = , where F is the vector sum of the physical forces applied to the particle and a is the absolute acceleration (that is, acceleration in an inertial frame) of the particle, given by: = , where r is the position vector of the particle (not to be confused with radius, as ...

  7. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The first of Newton's laws of motion states that an object's inertia keeps it in motion; since the object in the air has a velocity, it will tend to keep moving in that direction. A varying angular speed for an object moving in a circular path can also be achieved if the rotating body does not have a homogeneous mass distribution. [2]

  8. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    So long as the force acting on a particle is known, Newton's second law is sufficient to describe the motion of a particle. Once independent relations for each force acting on a particle are available, they can be substituted into Newton's second law to obtain an ordinary differential equation, which is called the equation of motion.

  9. Non-inertial reference frame - Wikipedia

    en.wikipedia.org/wiki/Non-inertial_reference_frame

    In classical mechanics it is often possible to explain the motion of bodies in non-inertial reference frames by introducing additional fictitious forces (also called inertial forces, pseudo-forces, [5] and d'Alembert forces) to Newton's second law. Common examples of this include the Coriolis force and the centrifugal force.