Search results
Results from the WOW.Com Content Network
The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the distinguishable physical states of a system's angular momentum, and the corresponding eigenvalues the observable experimental values.
That is, the resulting spin operators for higher-spin systems in three spatial dimensions can be calculated for arbitrarily large s using this spin operator and ladder operators. For example, taking the Kronecker product of two spin- 1 / 2 yields a four-dimensional representation, which is separable into a 3-dimensional spin-1 ( triplet ...
In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring (e.g. measurements which ...
Consider a quantum system described by the (time independent) Hamiltonian .The expectation value of a physical quantity at equilibrium temperature , described by the operator ^, can be evaluated as:
That is, the resulting spin operators for higher spin systems in three spatial dimensions, for arbitrarily large j, can be calculated using this spin operator and ladder operators. They can be found in Rotation group SO(3) § A note on Lie algebras. The analog formula to the above generalization of Euler's formula for Pauli matrices, the group ...
The Ehrenfest theorem, named after Austrian theoretical physicist Paul Ehrenfest, relates the time derivative of the expectation values of the position and momentum operators x and p to the expectation value of the force = ′ on a massive particle moving in a scalar potential (), [1]
Thus, the spin raising and lowering operators + = + and =, so that [+,] =, correspond (in the sense detailed below) to the bosonic annihilation and creation operators, respectively. The precise relations between the operators must be chosen to ensure the correct commutation relations for the spin operators, such that they act on a finite ...
The Wigner–Eckart theorem is a theorem of representation theory and quantum mechanics.It states that matrix elements of spherical tensor operators in the basis of angular momentum eigenstates can be expressed as the product of two factors, one of which is independent of angular momentum orientation, and the other a Clebsch–Gordan coefficient.