Search results
Results from the WOW.Com Content Network
The conventional definition of the spin quantum number is s = n / 2 , where n can be any non-negative integer. Hence the allowed values of s are 0, 1 / 2 , 1, 3 / 2 , 2, etc. The value of s for an elementary particle depends only on the type of particle and cannot be altered in any known way (in contrast to the spin ...
The spin representation Δ is a vector space equipped with a representation of the spin group that does not factor through a representation of the (special) orthogonal group. The vertical arrows depict a short exact sequence .
Given a unit vector in 3 dimensions, for example (a, b, c), one takes a dot product with the Pauli spin matrices to obtain a spin matrix for spin in the direction of the unit vector. The eigenvectors of that spin matrix are the spinors for spin-1/2 oriented in the direction given by the vector. Example: u = (0.8, -0.6, 0) is a unit vector ...
Spin- 1 / 2 particles can have a permanent magnetic moment along the direction of their spin, and this magnetic moment gives rise to electromagnetic interactions that depend on the spin. One such effect that was important in the discovery of spin is the Zeeman effect , the splitting of a spectral line into several components in the ...
So a standard clock, with its spin vector defined by the rotation of its hands, has left-handed helicity if tossed with its face directed forwards. Mathematically, helicity is the sign of the projection of the spin vector onto the momentum vector: "left" is negative, "right" is positive.
In particle physics the spin–statistics theorem implies that the wavefunction of an uncharged fermion is a section of the associated vector bundle to the spin lift of an SO(N) bundle E. Therefore, the choice of spin structure is part of the data needed to define the wavefunction, and one often needs to sum over these choices in the partition ...
In physics, helicity is the projection of the spin onto the direction of momentum. Mathematically, helicity is the sign of the projection of the spin vector onto the momentum vector: "left" is negative, "right" is positive.
Spin (quantum number S) is a vector quantity that represents the "intrinsic" angular momentum of a particle. It comes in increments of 1 / 2 ħ. [A] Quarks are fermions—specifically in this case, particles having spin 1 / 2 ( S = 1 / 2 ).